330 research outputs found

    Bringing the Blockchain to Life: Or how I learned to stop worrying and love the algorithm

    Get PDF

    On the Role of Disks in the Formation of Stellar Systems: A Numerical Parameter Study of Rapid Accretion

    Full text link
    We study rapidly accreting, gravitationally unstable disks with a series of global, three dimensional, numerical experiments using the code ORION. In this paper we conduct a numerical parameter study focused on protostellar disks, and show that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the disk's accretion rate to its sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate, and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.Comment: 16 pages, 12 figures, submitte

    Radiation-Hydrodynamic Simulations of the Formation of Orion-Like Star Clusters I. Implications for the Origin of the Initial Mass Function

    Full text link
    One model for the origin of typical galactic star clusters such as the Orion Nebula Cluster (ONC) is that they form via the rapid, efficient collapse of a bound gas clump within a larger, gravitationally-unbound giant molecular cloud. However, simulations in support of this scenario have thus far have not included the radiation feedback produced by the stars; radiative simulations have been limited to significantly smaller or lower density regions. Here we use the ORION adaptive mesh refinement code to conduct the first ever radiation-hydrodynamic simulations of the global collapse scenario for the formation of an ONC-like cluster. We show that radiative feedback has a dramatic effect on the evolution: once the first ~10-20% of the gas mass is incorporated into stars, their radiative feedback raises the gas temperature high enough to suppress any further fragmentation. However, gas continues to accrete onto existing stars, and, as a result, the stellar mass distribution becomes increasingly top-heavy, eventually rendering it incompatible with the observed IMF. Systematic variation in the location of the IMF peak as star formation proceeds is incompatible with the observed invariance of the IMF between star clusters, unless some unknown mechanism synchronizes the IMFs in different clusters by ensuring that star formation is always truncated when the IMF peak reaches a particular value. We therefore conclude that the global collapse scenario, at least in its simplest form, is not compatible with the observed stellar IMF. We speculate that processes that slow down star formation, and thus reduce the accretion luminosity, may be able to resolve the problem.Comment: 17 pages, 13 figures, emulateapj format, ApJ in press; simulation movies available at http://www.ucolick.org/~krumholz/publications.htm

    A Chandra Observation of Supernova Remnant G350.1-0.3 and Its Central Compact Object

    Full text link
    We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnant's western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnant's peculiar asymmetries and shed new light on its dynamics and evolution

    The evolution of mass loaded supernova remnants: II. Temperature dependent mass injection rates

    Get PDF
    We investigate the evolution of spherically symmetric supernova remnants in which mass loading takes place due to conductively driven evaporation of embedded clouds. Numerical simulations reveal significant differences between the evolution of conductively mass loaded and the ablatively mass loaded remnants studied in Paper I. A main difference is the way in which conductive mass loading is extinguished at fairly early times, once the interior temperature of the remnant falls below ~ 107 K. Thus, at late times remnants that ablatively mass load are dominated by loaded mass and thermal energy, while those that conductively mass load are dominated by swept-up mass and kinetic energy. Simple approximations to the remnant evolution, complementary to those in Paper I, are given

    An adjustable law of motion for relativistic spherical shells

    Full text link
    A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows of matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal of Physics 201

    The Formation of Low-Mass Binary Star Systems Via Turbulent Fragmentation

    Full text link
    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks' susceptability to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and we predict turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamic simulations.Comment: 11 pages, 10 figures, accepted to Ap

    Metallicity and the Universality of the IMF

    Get PDF
    The stellar initial mass function (IMF), along with the star formation rate, is one of the fundamental properties that any theory of star formation must explain. An interesting feature of the IMF is that it appears to be remarkably universal across a wide range of environments. Particularly, there appears to be little variation in either the characteristic mass of the IMF or its high-mass tail between clusters with different metallicities. Previous attempts to understand this apparent independence of metallicity have not accounted for radiation feedback from high-mass protostars, which can dominate the energy balance of the gas in star-forming regions. We extend this work, showing that the fragmentation of molecular gas should depend only weakly on the amount of dust present, even when the primary heating source is radiation from massive protostars. First, we report a series of core collapse simulations using the ORION AMR code that systematically vary the dust opacity and show explicitly that this has little effect on the temperature or fragmentation of the gas. Then, we provide an analytic argument for why the IMF varies so little in observed star clusters, even as the metallicity varies by a factor of 100.Comment: 11 pages, 6 figures, emulateapj format, accepted to ApJ. Typos removed, references added, and discussion revised in section 3.2. Conclusions unchange

    Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. I. Varied Shock Speeds

    Full text link
    The discovery of decay products of a short-lived radioisotope (SLRI) in the Allende meteorite led to the hypothesis that a supernova shock wave transported freshly synthesized SLRI to the presolar dense cloud core, triggered its self-gravitational collapse, and injected the SLRI into the core. Previous multidimensional numerical calculations of the shock-cloud collision process showed that this hypothesis is plausible when the shock wave and dense cloud core are assumed to remain isothermal at ~10 K, but not when compressional heating to ~1000 K is assumed. Our two-dimensional models (Boss et al. 2008) with the FLASH2.5 adaptive mesh refinement (AMR) hydrodynamics code have shown that a 20 km/sec shock front can simultaneously trigger collapse of a 1 solar mass core and inject shock wave material, provided that cooling by molecular species such as H2O, CO, and H2 is included. Here we present the results for similar calculations with shock speeds ranging from 1 km/sec to 100 km/sec. We find that shock speeds in the range from 5 km/sec to 70 km/sec are able to trigger the collapse of a 2.2 solar mass cloud while simultaneously injecting shock wave material: lower speed shocks do not achieve injection, while higher speed shocks do not trigger sustained collapse. The calculations continue to support the shock-wave trigger hypothesis for the formation of the solar system, though the injection efficiencies in the present models are lower than desired.Comment: 39 pages, 14 figures. in press, Ap
    • …
    corecore