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ABSTRACT

The stellar initial mass function (IMF), along with the star formation rate, is one of the fundamental properties that
any theory of star formation must explain. An interesting feature of the IMF is that it appears to be remarkably
universal across a wide range of environments. Particularly, there appears to be little variation in either the
characteristic mass of the IMF or its high-mass tail between clusters with different metallicities. Previous attempts
to understand this apparent independence of metallicity have not accounted for radiation feedback from high-mass
protostars, which can dominate the energy balance of the gas in star-forming regions. We extend this work, showing
that the fragmentation of molecular gas should depend only weakly on the amount of dust present, even when the
primary heating source is radiation from massive protostars. First, we report a series of core collapse simulations
using the ORION AMR code that systematically vary the dust opacity and show explicitly that this has little effect
on the temperature or fragmentation of the gas. Then, we provide an analytic argument for why the IMF varies so
little in observed star clusters, even as the metallicity varies by a factor of 100.
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1. INTRODUCTION

The stellar initial mass function (IMF)—the distribution of
stellar masses at birth—appears to be remarkably constant
across a wide range of star-forming environments. While there
is some evidence that the IMF is different in giant elliptical (van
Dokkum & Conroy 2010; Treu et al. 2010) and dwarf galaxies
(Lee et al. 2009), in our own galaxy the IMF is practically
universal (Kroupa 2002; Chabrier 2003; Bastian et al. 2010).
In particular, while zero-metallicity stars likely had a much
different mass distribution than present-day stars (Abel et al.
2002; Bromm et al. 2002), the IMFs observed for Population I
and II stars appear to vary little with the metallicity of the star-
forming region. Bastian et al. (2010) review the literature on
this topic and find no evidence for a systemic dependence of
the IMF on metallicity. For example, in the Milky Way disk,
extreme outer galaxy clusters with metallicities of ~0.1 solar
have the same IMF as nearby clusters with approximately solar
metallicity (Yasui et al. 2008). Likewise, globular clusters,
which have metallicities that are often 10-100 times lower than
the solar value, have the same IMF as regions of present-day star
formation once dynamical evolution is taken into account (De
Marchi et al. 2000, 2010). Outside our own galaxy, Schmalzl
etal. (2008) and Sirianni et al. (2002) find no difference between
the Milky Way disk IMF and that of the Small Magellanic Cloud
(SMC), which has a metallicity of ~0.2 solar. In short, the IMF
appears to be insensitive to metallicity across a wide range
galactic environments and understanding why is an important
challenge for theories of star formation.

One potential explanation was offered by Elmegreen et al.
(2008). They focus on the characteristic mass of the IMF
plateau, which should be related to the Jeans mass M;
T3/2p=1/2 of the region. They calculate M, for a prestellar
core under the assumption that 7 is set by the balance between

molecular cooling and heating from gas—dust coupling, finding
that for a given dust temperature, the gas temperature depends
only weakly on metallicity. However, this skirts an important
question: What if the dust temperature itself is a strong function
of metallicity? In regions where stars are already forming,
radiative feedback should dominate the dust’s energy balance
even before the onset of nuclear burning, especially when the
stars are massive. This is not a minor effect. Most stars are born
in clusters (Lada & Lada 2003), and the cluster mass function is
dN/dM M2 (Zhang & Fall 1999; Fall et al. 2009; Chandar
etal. 2010), which implies equal mass per logarithmic bin. Thus,
2/3 to 3/4 of stars are born in clusters of 1000 M or more,
and essentially all of these clusters are expected to contain at
least one early O star. Hence, the majority of stars do not form
in isolated environments like Elmegreen et al. consider, but
form rather in the presence of a massive star that will affect
the gas temperature distribution. If this heating were strongly
metallicity dependent, then M; would be as well.

Other work has considered the effect of protostellar feedback
on the form and apparent universality of the IMF. Bate (2009)
argued that the lack of variation in the IMF is the result of
self-regulating feedback from radiating protostars, but did not
explain why this effect should be independent of metallicity
when the material around the stars is optically thick. Addition-
ally, while Bate includes radiative feedback, he underestimates
the luminosity by a factor of 20 and the temperature in the core
by more than a factor of 2 (Offner et al. 2009). He also does not
form any massive stars, which if present would dominate the
heating rate.

High-mass stars are known to strongly affect the tempera-
ture and fragmentation of molecular gas. Heating from their
extremely high luminosities, which can reach 103 times the so-
lar value, is capable of raising M, significantly and prevent-
ing further fragmentation. Observations using ground-based
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interferometers reveal that a number of ~100 My massive
cores appear to remain single, compact objects when observed
at 1700 AU resolution, even though the cores initially con-
tained roughly 103 Jeans masses worth of material (Bontemps
et al. 2010). Similarly, Longmore et al. (2011) show observa-
tions of a young, massive star-forming region within the IRAS
18032-2137 complex that suggest a typical fragment size of
>1 M. Numerical simulations (Krumholz et al. 2010, hereafter
KCKM10) find that this effect is most pronounced in regions
of high surface density, where the accretion rates are high and
the core is effective at trapping radiation in the optically thick
regions near protostars. Krumholz & McKee (2008) argued for
an effective threshold surface density above which a region will
fragment into a few massive objects rather than into a few small
ones. This potentially explains why the IMF corresponds so well
to the core mass function (e.g., Alves et al. 2007; Enoch et al.
2008; Beuther & Schilke 2004) even for massive (=10 M)
cores, which based on isothermal assumptions should fragment
into many small objects instead of a few massive ones.

However, the strength of this effect could in principle de-
pend on the opacity of the dust, since that determines the
matter—radiation coupling, and hence on the metallicity of the
region. It is not obvious that the above effect would work at
all in globular clusters, which have far fewer metals, and pre-
sumably far less dust, than present-day Milky Way star-forming
regions. The purpose of this paper is to gauge the importance of
metallicity to the fragmentation of star-forming molecular gas
at small scales, where the collapse is highly non-isothermal due
to radiative feedback. To do this, we have conducted a series of
core collapse simulations where we vary the dust opacity and
show that it makes little difference to the core’s temperature or
its fragmentation. We also provide a simple analytic argument
based on the work of Chakrabarti & McKee (2005) for why
the temperature profiles of prestellar cores should depend only
weakly on the dust opacity. This work sheds light on why the
IMF should be so similar in regions with different metallicity,
even when radiation feedback from massive stars on the gas
cannot be ignored.

The outline of the paper is as follows. In Section 2 we
describe our simulation setup, including the initial conditions
and numerical methods used. In Section 3 we show the results
of our simulations, which demonstrate how fragmentation is
insensitive to metallicity variations of a factor of 20. In Section 4
we apply the work of Chakrabarti & McKee (2005) to show that
the temperature profile of a dusty, centrally heated core should
depend only weakly on its metal content. Finally, we present
our conclusions in Section 5.

2. SIMULATION SETUP
2.1. Numerical Techniques

To perform our simulations, we have used ORION
(Truelove et al. 1998; Klein 1999), a parallel, adaptive mesh,
radiation-hydrodynamics code for astrophysical applications.
The equations and methods used are almost identical to those
in KCKM10, so we describe them only briefly here, emphasiz-
ing the differences. In short, ORION tracks the four conserved
quantities of the combined gas—radiation fluid: the density p, the
momentum per unit volume pv, the non-gravitational gas energy
density pe, and the radiation energy density E. It updates these
quantities conservatively, including the effects of gravity and
diffuse radiation, but not magnetic fields or ionizing radiation.
The radiation transport is solved in the flux-limited diffusion
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approximation using the mixed-frame formulation (Mihalas &
Klein 1982), retaining terms of order v/c. For a full description
of the equations solved by the radiation module as well as ac-
curacy tests of the mixed-frame treatment, see Krumholz et al.
(2007b) and Shestakov & Offner (2008).

In addition to the gas and radiation, the simulation domain
also includes star particles, which are placed on fine level grids
whenever the Jeans density in a cell exceeds a critical value
(see below). Star particles interact with the gas by accreting
mass from the simulation volume according to the algorithms in
Krumholz et al. (2004) and emitting radiation according to the
protostellar model described in the appendices of Oftfner et al.
(2009). The full set of equations solved for the fluid is

%p:—v-(pv)—Zi:MiW(X—xi), (D
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= W —x), 2)
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where kor and kop are the Planck and Rosseland mean opacities
computed in the comoving frame of the fluid and B =
cag T; /(4m) is the Planck function. The flux limiter A and
R», which is related to the Eddington factor, are dimensionless
numbers that enter into our approximation of the radiative
transfer. For details, refer to Krumholz et al. (2007b) and the
references therein.

In the above equations, the sums are taken over all the particles
in the simulation. L; is the luminosity of star i, while M;, p;,
and & are the rates at which mass, momentum, and energy are
transferred from gas to stars. W(x —x;) is a kernel that distributes
the transfer over a radius of four fine level cells around the star.
The star particles are updated according to

dM =M (5)
dt r |5}
d )2
—X; = —, 6
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dt

where ¢ is the gravitational potential given by

Vi = —471G|:,0 + Z M;8(x — x,-)i|. (8)
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For the purpose of computing the gravitational force on a
sink particle, we have used a Plummer Law with a smoothing
length of two fine level cells (14 AU in physical units) for the
gas—sink force and a smoothing length of fine fine level cell
for the sink—sink forces; see Krumholz et al. (2004) for details.
Note that we do not include the effects of protostellar outflows;
for discussion of high-mass star formation with outflows, see
Cunningham et al. (2011).
We adopt a polytropic equation of state:

kgT, v?
P=m=(y—1>p(e——), ©)
umy 2

where T} is the gas temperature, ;. = 2.33 is the mean molecular
weight for molecular gas with cosmic abundances, and y is the
ratio of specific heats. We have taken y = 5/3, appropriate for a
gas of molecular hydrogen with the rotational levels frozen out,
but this choice is essentially irrelevant because 7, is determined
primarily by radiative effects.

The above are all identical to KCKM10. The only differences
between the numerical schemes employed in those simulations
and ours are as follows.

1. We have used the dust opacity model described in
Cunningham et al. (2011), based on the work of Semenov
et al. (2003). This opacity model was created with stellar
winds in mind and includes line cooling effects at high
temperatures. These effects are irrelevant at 7, < 1000 K,
which includes practically all of the gas under discussion
here.

2. We have turned off mergers between sink particles with
masses greater than 0.05 M.

3. We have modified the Plank and Rosseland mean dust
opacities by a multiplicative constant § to allow for dust-
to-gas mass ratios other than solar.

Item (2) requires some discussion. As mentioned above, each
sink particle is surrounded by an accretion zone of four fine level
cells from which it draws gas. In KCKM10, if a sink particle
moved within another sink’s accretion zone, the particles would
merge regardless of their masses. Because the finest resolution
in our simulations is ~7 AU, this would mean that any stars that
ever moved within a distance of 28 AU would be combined.
Because this may not be realistic, we have imposed a mass
limit of 0.05 Mg above which sink particles will no longer
merge. This limit is chosen to roughly correspond to the mass
at which a protostar’s core temperature becomes high enough
to dissociate molecular hydrogen and initiate second collapse
(Masunaga et al. 1998; Masunaga & Inutsuka 2000). Before
this, the sinks are more like extended balls of gas with radii of
a few AU than stars, so it is more likely that they will merge.
After second collapse, the sinks represent objects that are much
smaller, and mergers should be less likely. Although our initial
conditions are also slightly different (see below), this choice
accounts for most of the differences between the simulations
reported here and those in KCKM10.

2.2. Refinement Criteria

The computational domain is a cube of side Lpox that is
discretized into a coarse grid of Ny cells, so that the resolution
on the coarse grid is xo = Lpox/No. The AMR functionality
of ORION automatically identifies regions that need more
resolution and covers them with a finer grid. With L levels
of refinement and a refinement ratio of 2, the resolution of the
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finest level is Ax; is xo/2". In this work, we have chosen these
parameters such that Ax; is always ~7 AU.
In generating the grids, a cell is tagged for refinement if

1. it is within a distance 16Ax, of the nearest star particle;
2. it has a density greater than the Jeans density, given by

2

5 10
Gac (10)

py=J*

where c; is the sound speed and we use J = 1/8 (Truelove
et al. 1997);

3. the local gradient in the radiation energy is greater than a
critical value, given by

0.15-% (11)
5

This procedure is repeated recursively until the final level is
reached. Taken together, these conditions ensure that the regions
near the star particles are always tracked with the highest
available numerical resolution.

2.3. Initial Conditions

Our initial conditions also follow the approach laid out
in KCKM10 and have been chosen to resemble the struc-
tures from which massive stars are believed to form. Obser-
vations of the internal structure of infrared dark clouds using
submillimeter interferometry reveal the presence of peaks in the
local density distribution termed massive cores (Swift 2009).
They are measured to have masses in the range of ~100 M,
radii of about ~0.1 pc, and temperatures of about ~20 K. Mas-
sive cores are observed to be centrally concentrated, and unlike
low-mass prestellar cores are highly turbulent, with virial ratios
of order unity.

To model these objects, we initialize the simulation volume
to contain a sphere of gas with radius R, total mass M,
surface density ¥ = M /7 R?, and constant initial temperature
T.ore = 20 K. Following the theoretical models of McKee &
Tan (2003), we give the core a power-law density profile of

p(r) ocr=*, (12)

where we have taken k, to be 1.5. This is consistent with ob-
servations of clumps of molecular gas—structures a few pc in
size with thousands of solar masses of material—which reveal
power-law density profiles with scaling exponents between 1
and 2 (Beuther et al. 2007; Caselli & Myers 1995; Mueller
et al. 2002), and with higher resolution observations of indi-
vidual cores, which find power-law density profiles with slopes
between 1.5 and 2 (Longmore et al. 2011; Zhang et al. 2009).
We stress, however, that the artificiality of the initial conditions,
in which the density initially lacks structure and the core is
considered in isolation, is a potential source of uncertainty.
The cores are placed in a cubic volume with Ly,x = 4 X R,
surrounded by a background medium with density pp; =
0.01 X pedge, Where pegge 18 the density at the edge of the initial

core:
3—k,\ M
Pedge = T E (13)
To maintain pressure balance, the temperature of the background
gas is set to Tpg = 100 x Teore = 2000 K. The opacity of the
ambient gas is set to a tiny value to ensure that it does not
interfere with the temperature structure of the collapsing core.
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Table 1
Simulation Parameters
Name ) M(Mg) Z(gem™2) R(pc) o, (kmsh) g (kyr) L Ny Axy(AU) Ny Axy (AU)
Solar 1.0 300 2.0 0.1 3.59 30.2 6 192 430 12,288 6.71
0.2 Solar 0.2 300 2.0 0.1 3.59 30.2 6 192 430 12,288 6.71
0.05 Solar ~ 0.05 300 2.0 0.1 3.59 30.2 6 192 430 12,288 6.71
High = 0.2 300 10.0 0.045 537 9.03 5 168 220 5,376 6.85

Note. Column 7: linear size of computational domain; Column 8: maximum refinement level; Column 9: number of cells per linear dimension on the

coarsest level; Column 10: linear cell size on the coarsest level; Columns 11 and12: same as Columns 9 and 10, but for the finest level.

To mimic the effects of turbulence, we also give the cores an
initial Gaussian random velocity field with a power spectrum
P(k) o k~2. We scale each component of the velocity to have
a one-dimensional root-mean-squared dispersion equal to the
velocity at the surface of a singular polytropic sphere (McKee

& Tan 2003):
M
oy = |[—SM (14)
R(2k, — 1)

The corresponding virial parameter ayi; = S02GM /R (Bertoldi
& McKee 1992) is 5 for k, = 3/2, so that the turbulent kinetic
energy is initially larger than the gravitational potential energy.
However, the turbulence decays as the core collapses, so the
virial parameter drops.

Starting from these conditions, we have performed a series of
four core collapse simulations, summarized in Table 1. For three
of the runs, we chose a surface density of X =2 g cm~2, which
is comparable to the surface densities observed in massive star-
forming regions in the Galaxy. We vary the parameter §, which
represents the dust-to-gas mass ratio relative to that expected
at solar composition. The values of § = 1.0, 0.2, and 0.05 are
representative of nearby star clusters, extreme outer galaxy star
clusters, and low-metal globular clusters, respectively. We have
also conducted a run at X = 10 g cm~2, § = 0.2, which is
characteristic of extragalactic super star clusters. Motivated by
the above observations, we have chosen to set the mass M of all
our cores to 300 M. This is higher than in KCKM 10, but it will
allow us to form massive stars more quickly and thereby gauge
the effect of radiative feedback at less computational expense.
Because the mass of the cores is the same in the £ = 2 g cm™>
and £ = 10 g cm™2 runs, the High X run has a slightly smaller
radius. In the rest of the paper, we will refer to these runs by the
names given in Table 1.

We run all the simulations out to 0.5#f, where fgx is the
gravitational free-fall time evaluated at the mean density p =

3M /47 R3:
3n
= 3265 (15)

By this time, the basic similarity of all the runs has been es-
tablished. We emphasize that in general, the numerical methods
and resolution have been held constant across all the runs, so that
any differences between them should be attributable to variation
in § or 2.

3. RESULTS
3.1. Temperature and Density Structure

Figure 1 shows the result of evolving the above cores out
to half a global free-fall time. The leftmost panels show the
column density in units of g cm™2, zoomed out to show

the entire simulation volume. The large scale morphology of
the collapse is practically identical between the £ = 2 g cm™2
runs, as that is set primarily by the magnitude of the initial ve-
locity perturbations. The High X run shows a slight tendency to-
ward more filamentary structure than the others, since the initial
Mach number must be larger to pump the higher surface den-
sity cloud into virial equilibrium. Nonetheless, the differences
between the High X run and the others are only minor at this
scale.

The middle panels again show the column density, with the
same units and color scale as before, but zoomed in to show the
central 5000 AU around the most massive object. At this scale,
some differences between the runs are apparent. In particular,
the shape of the accretion flow around the stars appears to be
different in the three ¥ = 2 g cm™2 runs. This is because
radiation pressure can be important near the massive star(s),
and its magnitude varies with the opacity.

The rightmost panels show the column density-weighted gas
temperature at the same 5000 AU scale. The most striking
feature is that the temperature of the gas surrounding the central
condensation of stars is quite similar in the three £ = 2 g cm™2
runs. Changing the opacity by a factor of 20 appears to have
little impact on the temperature of the bulk of the gas. On the
other hand, the High X run has noticeably more gas heated to
100° or higher. The “wall” of hot gas visible on the left-hand
side of some of the runs is the hot, diffuse medium that was
initially outside the core; it is more visible in the High X run
because the core is smaller, so that the 5000 AU frame captures
a larger fraction of the volume. The stars are near the edge of
the core at = 0.5¢ in all the runs because the random velocity
perturbations we used happened to advect them that way. With a
different realization of the turbulence, this would not necessarily
happen.

3.2. Fragmentation and Star Formation

At the end of 0.5 free-fall times, about 40 M of gas has
been turned into stars or about 13% of the total core. At that
point, all the runs have a massive star of ~10 M. In the three
Y = 2.0 g cm™? runs, this star forms a binary system with a
massive companion of ~6 M. In the High ¥ run, the secondary
is only 3 M, with the missing mass spread out among the other
objects.

A major difference between these simulations and those of
KCKM10 and Cunningham et al. (2011) is that we form many
more objects during the collapse. This difference is largely due
to the choice of merger criterion—by turning off mergers beyond
a threshold mass, objects that would have formed a single star
here form several. At the opening stage of the collapse, the
initial velocity perturbations create a network of dense filaments,
visible in the leftmost panels of Figure 1. Because the core
is centrally concentrated, gas falls into the center, forming a
star with about 3 M, after approximately 0.15 free-fall times.
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Figure 1. Projections through the simulation volumes at = 0.5f;. The left panels show the column density of the entire core, defined as | pdx. The middle column
is also the column density, zoomed in to show the middle 5000 AU. The right column shows the column density-weighted temperature, [ p Tgasdx/ [ pdx, at the same
scale. The rows, from top to bottom, show runs “Solar,” “0.2 Solar,” “0.05 Solar,” and “High X.” Stars are represented by circles drawn on the plots, with the size of
the circle corresponding to the size of the star. Stars with masses between 0.05 Mg and 1 Mg are the smallest, intermediate mass stars with 1 Mg < m < 5 Mg are

larger, and stars with masses greater than 5 M, are the largest.

At this time, additional sinks begin to form in the gas that is
falling on to the star. Some of these sinks are small enough
that they will merge onto the central star, but many of them
accrete enough mass that they surpass the 0.05 Mg threshold
and become “stars” in their own right. These objects fall into the
center of the core’s gravity well and begin to undergo complex
N-body interactions with each other. They stay in the center for

several orbits before being thrown out. At that time, they will
have grown to approximately 0.1-1 M, and will take away with
them mass that would have merged with the central star(s) in
the simulations without merger suppression. This results in the
most massive star growing much less rapidly after ~0.2¢; than
in KCKM10 or Cunningham et al. (2011). Thus, with mergers
suppressed, we form a massive star or binary plus a system of
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a few dozen low-mass stars, as opposed to having most of the
stellar mass in one system.

The fragmentation observed in these simulations is quali-
tatively different from previous simulations with ORION that
did not suppress mergers for sinks larger than 0.05 M. While
we emphasize that the handling of stellar mergers is artificial
in both cases, the large number of massive stars observed to
have close companions (Sana et al. 2008) shows that merging
all stars with separations less than 28 AU is clearly unrealistic.
For that reason, the model used here is probably more accu-
rate than merging stars regardless of their masses. However, it
probably errs in the other direction. For example, because we
necessarily soften the gravitational interactions of stars with gas
on scales smaller than the grid scale, we underestimate the dy-
namical friction that stars experience as they pass through one
another’s disks and thus underestimate the rate at which this
process causes stars to be captured (e.g., Pfalzner et al. 2005,
2006). Even if such captures do occur, our present prescription
does not allow the stars to merge. We emphasize that all parti-
cle merger prescriptions, whether in our code or in others (e.g.,
Bate et al. 1995; Federrath et al. 2010), are suspect because they
involve subgrid models for hydrodynamic and gravitational in-
teractions on scales that are not resolved in the simulation. The
absolute number and masses of stars formed is affected by the
choice of sub-grid model, so these results be should interpreted
cautiously. However, because the merger criterion is the same
for all the runs presented in this paper, any differences in the
mass distribution of the objects formed between the four runs is
due to changes in X and 4, not the merger criterion.

The idea that fragmentation of incoming gas limits the mass
supply for massive stars has been discussed before in the
literature. Most recently, Peters et al. (2010) coined the term
“fragmentation-induced starvation” to describe the phenomenon
where gas en route to a massive star instead collapses to form a
low-mass star before arriving, depriving the massive star of that
material. Because our simulations start from turbulent initial
conditions, the fragmentation happens in the dense filaments
that feed the central star system rather than in a disk as in the
non-turbulent simulations of Peters et al., but the underlying idea
is the same. The competitive accretion models of Bonnell et al.
(1997) and Bonnell et al. (2004) show a similar phenomenon.
However, it is important to distinguish between the dynamics
in our simulation and those in traditional competitive accretion
models. In the absence of radiative feedback, fragmentation
always proceeds down to the thermal Jeans mass, ~0.5 Mg, (e.g.,
Bonnell & Bate 2006). Only once fragments of that mass form
do they then grow to larger masses by Bondi—Hoyle accretion
of gas that is not initially bound to the star. The dynamics
in our simulation are different, in that the radiatively heated
gas in our simulations does not always fragment down to such
small masses, and our central massive stars are built by a direct
collapse and not by Bondi—Hoyle accretion. The difference
becomes apparent if one compares our simulations to those
of Dobbs et al. (2005), who start with initial conditions very
similar to ours, but do not include radiative feedback. In their
simulations, after 0.5#; they find no stars larger than ~1 Mg
because all the gas has fragmented to small masses, while in our
simulations we have 10 M, stars after a similar time.

Figure 2 shows the properties of the star particles formed in
the simulations as a function of time. To show all the runs on the
same plot, we have normalized the time by #, but in physical
units the High 2 simulation evolves about three times faster than
the others. The top panel shows the total mass in stars, which is
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Figure 2. Star particle statistics as a function of time for all four runs. The top
panel shows the total mass in stars (the top set of lines) and the mass of the most
massive star (bottom, dashed set). The middle plot shows fmax, the fraction of
total stellar mass that is in the most massive star. The bottom plot is the total
stellar luminosity.

(A color version of this figure is available in the online journal.)

quite similar across all the runs. This is to be expected, because
the star formation rate is set by the global properties of the
flow, which are essentially independent of radiative effects. The
middle panel shows fi.x, the fraction of the total stellar mass
that is in the most massive star. There is a period around 0.3#
where the Solar run levels off, but this appears to be a temporary
phenomenon. By 0.5¢#¢, fmax 1S very similar across all the runs.
Overall, there appears to be little difference between the runs,
either in the total mass converted to stars or in the fraction of that
mass that ends up in the most massive star. The bottom panel
of Figure 2 shows the total luminosity of all the stars in the
simulation. The value of 10* L we find is typical of observed
massive protostars (e.g., Cesaroni et al. (2007)). Here, we can
see a difference between the High X run and the others—because
of the higher accretion rates, the total luminosity is higher in the
High X run, although the difference decreases with time as the
stars become more massive and more of the radiant output comes
in the form of nuclear luminosity. The nuclear luminosity is
never dominant, however, and thus the luminosity as a function
of time is roughly flat after about 0.2#, even though we are
forming more stars and the stars are growing more massive. We
will make use of the luminosity averaged after over 0.2# to
0.5t in Section 4 below.

Figure 3 shows the cumulative mass distribution of the stars
in the four runs—that is, for each value of m, the y-axis shows
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Figure 3. Cumulative mass distributions from all four runs att = 0.5#. f(> m)
the fraction of the total stellar mass that is in stars with masses greater than m.

(A color version of this figure is available in the online journal.)

Table 2
P-values from Two-sided K-S Tests for the Simulated Mass Distributions
Run Solar 0.2 Solar 0.05 Solar High X
Solar .. 0.1 0.62 0.02
0.2 Solar . 0.16 0.01
0.05 Solar .. 0.02

the fraction of the total stellar mass than is in stars with masses
greater than m. Visually, there appears to be little difference
between the curves, particularly for the £ = 2 g cm™2 runs. To
test whether the IMF is indeed the same in the different runs, we
have performed two-sided Kolmogorov—Smirnov (K-S) tests
between each pair of distributions. The results are shown in
Table 2. At the 10% level, we cannot reject the null hypothesis
that the three £ = 2 g cm~2 have the same underlying IMF.
The High X distribution, on the other had, does seem to be
statistically different from the others.

In contrast to the minor effect reported here, Krumholz et al.
(2007a) found that isothermal runs fragmented completely dif-
ferently from radiative ones, and KCKM 10 found a major differ-
ence in fragmentation between runs with low and high surface
density. To summarize, the differences in the fragmentation of
all of our runs are minor. To the extent that there are significant
differences, they are due to changes in the surface density, rather
than to changes in the metallicity. At least within the range of
parameters considered here, metallicity appears to have little ef-
fect on either the temperature or the fragmentation of molecular
gas.

4. DISCUSSION
4.1. Analytic Model

The above simulations suggest that metallicity plays little role
in the fragmentation of star-forming gas. To understand why,
consider a simple model system like the initial conditions above:
a core of gas and dust with radius R., mass M, surface density
Y = M/m R?, and a power-law density profile p(r) oc r ~*». We
would like to understand what happens to the temperature of
this core once stars have started to form, so we will place a point
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source of luminosity L in the center to represent the combined
radiant output of the central collection of stars. We assume that
the dust opacity follows a power law in the far IR regime:

2 B
Ky, = 8K (7())

T B
= Sk (T) ,for3mm < A < 30 um, (16)
0

where the subscript “0” refers to an arbitrary reference value
and § is the dust-to-gas mass ratio relative to solar. The 7 in this
equation is the dust temperature, which we assume is identical to
the radiation temperature. We will adopt the dust opacity model
of Weingartner & Draine (2001), for which ko = 0.27 cm? g~!
at Ao = 100 um and B = 2; however, we have verified that
using the opacities of Semenov et al. (2003; as used by ORION)
or Pollack et al. (1994) makes little difference. For reference,
the corresponding Ty is 144 K.

The emission from such a system is considered in Chakrabarti
& McKee (2005; hereafter CM2005). They find that even though
cores do not have sharply delineated photospheres as stars do,
the radiation they emit is still well described by

L=L4nR%0 TS, (17)

where L is a constant of order unity and T, and R, are a
characteristic temperature and the radius from which radiation
with frequency v, = kTi,/ h has an optical depth of 1. These
are given by

. R,
R. =
Rch
4/B _g
_ (L/M)Z(4+5)/‘3 (3 — k,)dxo (18)
B 4ol 4k, — )T
and
ket
LM [ak, -t | °
Ty = /H (k, = DTy . (19)
4oLyt [ G ko)dko

where = 28+4(k,—1). Rather than using the expression for L
given in CM2005, we will adopt the more accurate expression
from Chakrabarti & McKee (2008), which they report gives
excellent agreement with results from the DUSTY code, based
on the work of Ivezic & Elitzur (1997):

i=16R"" (20)

A final result we will take from CM2005 is that the temperature
profile in the vicinity of the photosphere is also well described
by a power law:

—kp
T(r) = T (R'"h> . @1)

We can solve the above equations simultaneously to get that the
temperature as a function of density (or, equivalently, radius) in
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Table 3
Light-to-mass Ratios
Run L/M
Solar 80.7
0.2 Solar 69.8
0.05 Solar 65.4
High X 152.6

Note. Averaged over t = 0.2t to t = 0.5#.

the core is

T(p) = To(p/ Pedge) ™",
T(r)=T.(r/R)*,

kp—1+Bky
. [L/M] « (3 — k,)Sk0

¢ 4oL 4k, — DT
@+p)kp+kp—3

XX @, (22)

4k =2

or, specializing to k, = 3/2 and 8 = 2,

kp+1/4 Zhp 1
3

L/M7 =5 |38 :
T, = [/—] —Kg shr=1/4, (23)
4oL 4T,

We can see from this expression that the scaling of 7, with
§ actually goes to zero for k7 = 0.5. This is surprising at first,
since both I:éc and Ty, scale with 6, to the —2/3 and —1/3 powers,
respectively, for our assumed parameter values. However, we
can understand this in the following way: Take a point r that
is outside the effective photosphere of the core. Since radiation
with frequency v, is thin here, this point’s temperature will be
determined roughly by radiative equilibrium with a luminosity
source with effective radius R, and temperature Tgy,. If we then
lower 8, R, will decrease, since the core will be less effective
at trapping radiation and photons with frequency v, will be
able to travel farther through the core’s envelope before being
absorbed. This will make the effective emitting area smaller,
which will tend to lower the flux at point . However, because
it is closer to the central heating source, the temperature at the
new value of R, will be higher as well and that will tend to
increase the flux at r. If the temperature always scales as the
—0.5 power of radius, then these two effects will cancel out
exactly; the luminosity seen at r, L &~ 4o R% T4, will be the
same and the temperature will be the same as well.

Is kr close to 0.57 CM2005 give a fitting function for the

temperature scaling exponent k7 as a function of R.:

0.005 5.5
048K 0.1k}

T — .
~ 0,021 T~ 0.7k1%
R, R,

(24)

This expression shows that as long as R. > 1, meaning that
the photospheric radius is less than half the core radius, k7 is
indeed quite close to 0.5 and depends only weakly on R.. This
expression assumes that Tc, < 300 K, so that most of the flux is
emitted at wavelengths longer than 30 xm and the opacity is well
approximated by a power law in frequency. We have verified that
this condition holds under the circumstances considered in this
paper. Since dust sublimates at ~1000 K, this condition also
implies that Ry, is larger than the dust destruction radius.

Note that for a given £ and L/M, R, is a function of & only.
From our simulation results, we can calculate the light-to-mass
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Figure 4. Temperature scaling exponent kr as a function of § for the two different
values of X considered in the simulations.

(A color version of this figure is available in the online journal.)

ratio associated with £ = 2 and 10 g cm~2 from the luminosities
shown in the bottom panel of Figure 2, averaged over the period
from ¢ = 0.2t to t = 0.5t¢. The results are shown in Table 3.
The “M” here refers to the gas mass only, not the mass in stars.
In the £ = 2 g cm™? runs, the light-to-mass ratio appears to
depend weakly on &, but the effect is small and we will simply
use the average over the three metallicities.

In Figure 4, we plot k7 as a function of § for the two values
of X represented in our simulations from Equation (24). Note
that k7 remains relatively close to 0.5 for a wide range of values
for § for both of the surface densities we have considered. It is
therefore not surprising that the simulations show such a weak
dependence on §.

Note that for most of the parameter space, the value of kr
is actually a bit less than 0.5, meaning that the temperature
actually scales inversely with §. When the temperature falls off
more slowly than k7 = 0.5, the temperature at the smaller value
of R, associated with a lower § will actually be larger than what
is required to keep the temperature outside of the photosphere
at a constant value, so T will increase slightly. Once § increases
much past solar, however, kr increases dramatically and T begins
to rise with §.

4.2. Comparison to Simulations

We can also calculate the temperature profiles expected for
the cores in the above simulations. The procedure is as follows.
Using the light-to-mass ratios from Table 3 along with the known
simulation values of X and §, we can compute k7 using Equations
(18) and (24). Then, we use this value along with Equation (22)
to get the temperature as a function of radius. In Figure 5, we plot
these relations and compare them to the profiles calculated from
the simulations. To get the simulation profiles, we calculated
the density-weighted mean temperature in spherical shells of
radius r around the most massive star, and plotted the result
versus r. The density weighting ensures that the hot, diffuse gas
surrounding the cores does not interfere with the result inside
the core, although its presence can be seen in the temperature
rise as r approaches the core radius R.. We have averaged the
simulation profiles over all the snapshots from ¢ = 0.2#;, when
the luminosity has roughly leveled off, to r = 0.5#, and the
error bars show the standard error over all the snapshots. The



THE ASTROPHYSICAL JOURNAL, 735:49 (10pp), 2011 July 1

10°

— Solar

— 0.2 Solar
— 0.05 Solar
—— High Sigma

Figure 5. Temperature profiles from the simulations (dots) and analytic theory
(solid lines). To show both values of X on the same plot, we have normalized r
by the size of the core R.. The simulations profiles are averaged over t = 0.2t
tot = 0.5t.

(A color version of this figure is available in the online journal.)

error bars are larger close to the central massive star because of
the presence of dynamically interacting stars within in central
few hundred AU of the simulation volume. The important things
to note are as follows.

1. The simulation results confirm the power-law nature of the
temperature profile and agree closely with the predicted
slopes.

2. The effect of varying the metallicity is quite small compared
to the effect of changing the surface density, both in the
analytic calculation and in the simulations.

The analytic expression is systematically higher than the
simulations by roughly 10%. It does, however, agree with
the jump in 7 from £ = 2 gcm ™2 to £ = 10 g cm™2
quite well. The discrepancy is likely due to differences in the
treatment of the radiative transfer between our simulations and
CM2005. ORION treats the radiation in a frequency-averaged
gray approximation in terms of the Plank and Rosseland mean
opacities, while CM2005 used the DUSTY code (Ivezic &
Elitzur 1997), which includes frequency information about
the photons. However, CM2005 also assumed a spherically
symmetric, static core with no density perturbations, so it is
not clear which result is more accurate. Whatever the case, both
methods agree that the temperature profiles are not particularly
sensitive to §.

4.3. Predictions for Star-forming Regions

Star-forming regions in the Milky Way and other galaxies
sample a large range of surface densities and metallicities. A
question we can ask is: In what range of parameter space is the
gas temperature insensitive to changes in the metallicity? To
answer this question, we will use the relationship between the
light-to-mass ratio and the surface density given in Krumholz
& McKee (2008):

L
L/M =~ 3.6M; 350877016 (—®> , (25)
) M@

where M, is M/100 Mg, Ty = X/1gcm=2 and Ty is the
background core temperature divided by 10 K. In what follows,
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Figure 6. Contours of the mean core temperature 7'(p) at the early stages of
collapse as a function of X and § for a core with mass M = 300 M. The
turnover of the 7= 30 K contour at high X and § is due to k7 becoming large;
see Equation (24) and Figure 4.

we will take M, = 3 and Ty,;; = 2. This expression is calculated
by assuming that the core converts its gas into stars at a rate of a
few percent per free-fall time and is not accurate once massive
stars have formed. However, it is still relevant to the early
stages of collapse and will allow us to gauge whether the core
temperature becomes high enough to slow fragmentation. Note
that the star formation efficiency assumed here is lower than
what we see in the simulations; because we have not included
the effects of outflows or other turbulence-driving mechanisms,
our star formation rates are higher than observed.

Using this expression, we can eliminate the dependence on L
in the equation for 7, to get the edge temperature as a function
of M, X, and § only. We plot the expected temperature for
an M = 300 Mg core as a function of these parameters in
Figure 6. To characterize the core by a single temperature,
we use Equation (22) to evaluate T (p) at the mean density
0 = 3pedage/(3—k,). Note that we have assumed the temperature
is determined by protostellar feedback; gas with sufficiently low
metallicity would be warm anyway owing to the lack of coolants.
Omukai et al. (2010) considered this effect and concluded that
it should be dominant for metallicities lower than 0.01 Zg,
so we will limit our analysis to values of § greater than 0.01.
Figure 6 includes a range of surface densities that span the
conditions typical of star formation, from low-mass star-forming
regions like Taurus and Perseus (0.1 g cm™2), to regions of active
massive star formation in the galaxy (1 g cm~?2), to extra-galactic
super star clusters (10 g cm™2). For all those environments, one
would need to change & by at least two orders of magnitude to
get a factor of two change in the temperature. Hence, we expect
there to be very little variation in the fragmentation of cores
across environments with different metallicities over the range
currently probed by observations. Note that Figure 6 shows
the mean core temperature only when the dominant source of
heating is protostellar feedback. In reality, cores in the upper
left-hand region of the parameter space would likely be hotter
than the indicated 5-10 K due to heating from cosmic rays or the
decay of turbulence, so the true range of temperature variation
is even smaller than indicated in Figure 6.

Unlike §, £ does make a significant difference in the core
temperature. In regions like Taurus (£ ~ 0.1 g cm™2), we do
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not predict protostellar feedback to be able to heat the gas much
above 10 K. Hence, collapse there will likely be isothermal
and may be more prone to fragmentation to produce low-mass
stars. Regions of higher surface density (£ ~ 1 g cm™2) are not
isothermal, which may bias them toward forming high-mass
stars.

5. CONCLUSIONS

We have performed a series of numerical experiments using
ORION in which we follow the collapse of massive cores past
the onset of star formation to the subsequent heating of the gas
by radiative feedback, varying the dust opacity by a factor of
20. We find that the opacity makes little difference to either the
temperature or the fragmentation of the cores as they collapse.
Our simulations consider surface densities of £ = 2 g cm™2,
characteristic of massive star-forming regions in the Milky Way,
and £ = 10 g cm~2, characteristic of extra-galactic super star
clusters.

We have also presented an analytic argument for why the IMF
should be relatively independent of the metallicity of the star-
forming region, even when the heating is dominated by a central
source as in high-mass star-forming cores. This helps to explain
why there do not appear to be significant differences between the
IMFs of disk stars and globular clusters, or between those of the
Milky Way and the SMC, despite large differences in metallicity.
We find that the metallicity should only weakly influence the
IMF over a large range of star-forming environments.
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