162 research outputs found

    A New Global Ocean Climatology

    Get PDF
    A new global ocean temperature and salinity climatology is proposed for two time periods: a long time mean using multiple sensor data for the 1900–2017 period and a shorter time mean using only profiling float data for the 2003–2017 period. We use the historical database of World Ocean Database 2018. The estimation approach is novel as an additional quality control procedure is implemented, along with a new mapping algorithm based on Data Interpolating Variational Analysis. The new procedure, in addition to the traditional quality control approach, resulted in low sensitivity in terms of the first guess field choice. The roughness index and the root mean square of residuals are new indices applied to the selection of the free mapping parameters along with sensitivity experiments. Overall, the new estimates were consistent with previous climatologies, but several differences were found. The cause of these discrepancies is difficult to identify due to several differences in the procedures. To minimise these uncertainties, a multi-model ensemble mean is proposed as the least uncertain estimate of the global ocean temperature and salinity climatology

    The chlorophyll seasonal dynamics in the Black Sea as inferred from Biogeochemical-Argo floats

    Full text link
    Biogeochemical-Argo (BGC-Argo) floats offer the opportunity to investigate the spatial and temporal dynamics of chlorophyll a (Chla) profiles. In the Black Sea, the unusual abundance of colored dissolved organic matter (CDOM) and the absence of oxygen below ∼80-100m require a revision of the classic formulation used to link the fluorescence signal and the algal chlorophyll concentration (e.g. Xing et al., 2017). Indeed, the very high content of CDOM in the basin is thought to be responsible for the apparent increase of Chla concentrations at depth, where it should be zero due to the absence of light. Here, the classic formulation to link fluorescence and Chla is revised based on a reference Chla dataset sampled during a scientific cruise onboard RV Akademik and analysed with High Performance Liquid Chromatography (HPLC). Then, using the established equation to remove the contribution of CDOM to the fluorescence signal, we estimated the Chla profiles from 4 BGC-Argo floats during the period 2014-2017. All Chla profiles were thus highly quality controlled by using the Argo documentation (Schmechtig et al., 2015). Especially, we removed bad data (e.g. spikes, outliers) and we corrected the Non-Photochemical Quenching effect, a photoprotective mechanism resulting in a decrease in the fluorescence signal at the surface. The Chla profiles are categorized based on fitting algorithms (e.g. sigmoid, exponential, gaussian) and empirical criteria. They display a large variety of shapes across the seasons (e.g. homogeneity in the mixed layer, subsurface maximum, double peaks below the surface, etc.) with roughly homogeneous profiles dominating between November and February while subsurface maxima are present during the rest of the year, with in summer a clearly-marked deep chlorophyll maximum (DCM). We then investigate the formation mechanism of DCMs based on the hysteresis hypothesis for the temperate ocean proposed by Navarro et al., (2013). For this, we looked at the correlation between the position of DCMs and the potential density anomaly of the mixed layer when it is maximum in winter, usually between February and March. We show that DCMs are highly correlated with the potential density anomaly of the previous winter mixed layer where a winter bloom initiated while the correlation with the 10% and 1% light levels is poor. This is in agreement with the hysteresis hypothesis that assumes that in regions where a bloom forms in late winter/early spring, this bloom remains established at a fixed density (i.e. the density of the mixed layer when it is maximum) until the end of summer acting as a barrier for the diffusion of nutrients from below and preventing the occurrence of deeper blooms due to a shading effect. This bloom is finally progressively eroded in autumn, when the depth of the mixed layer increases again

    Rotavirus Rearranged Genomic RNA Segments Are Preferentially Packaged into Viruses Despite Not Conferring Selective Growth Advantage to Viruses

    Get PDF
    The rotavirus (RV) genome consists of 11 double-stranded RNA segments. Sometimes, partial sequence duplication of an RNA segment leads to a rearranged RNA segment. To specify the impact of rearrangement, the replication efficiencies of human RV with rearranged segments 7, 11 or both were compared to these of the homologous human wild-type RV (wt-RV) and of the bovine wt-RV strain RF. As judged by viral growth curves, rotaviruses with a rearranged genome (r-RV) had no selective growth advantage over the homologous wt-RV. In contrast, r-RV were selected over wt-RV during competitive experiments (i.e mixed infections between r-RV and wt-RV followed by serial passages in cell culture). Moreover, when competitive experiments were performed between a human r-RV and the bovine wt-RV strain RF, which had a clear growth advantage, rearranged segments 7, 11 or both always segregated in viral progenies even when performing mixed infections at an MOI ratio of 1 r-RV to 100 wt-RV. Lastly, bovine reassortant viruses that had inherited a rearranged segment 7 from human r-RV were generated. Although substitution of wt by rearranged segment 7 did not result in any growth advantage, the rearranged segment was selected in the viral progenies resulting from mixed infections by bovine reassortant r-RV and wt-RV, even for an MOI ratio of 1 r-RV to 107 wt-RV. Lack of selective growth advantage of r-RV over wt-RV in cell culture suggests a mechanism of preferential packaging of the rearranged segments over their standard counterparts in the viral progeny

    Clinical outcome of skin yaws lesions after treatment with benzathinebenzylpenicillin in a pygmy population in Lobaye, Central African Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yaws is a bacterial skin and bone infectious disease caused by <it>Treponema pallidum pertenue</it>. It is endemic, particularly among pygmies in Central African Republic. To assess the clinical cure rate after treatment with benzathinepenicillin in this population, we conducted a cohort survey of 243 patients in the Lobaye region.</p> <p>Findings and conclusion</p> <p>The rate of healing of lesions after 5 months was 95.9%. This relatively satisfactory level of therapeutic response implies that yaws could be controlled in the Central African Republic. Thus, reinforcement of the management of new cases and of contacts is suggested.</p

    Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

    Get PDF
    Citation: Londono-Renteria, B., Troupin, A., Conway, M. J., Vesely, D., Ledizet, M., Roundy, C. M., . . . Colpitts, T. M. (2015). Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. Plos Pathogens, 11(10), 23. doi:10.1371/journal.ppat.1005202Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were >= 5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses

    Winter weather controls net influx of atmospheric CO2 on the north-west European shelf

    Get PDF
    Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1)
    corecore