5 research outputs found

    Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at √s = 13 TeV with ATLAS

    Get PDF
    The inclusive cross-section for the associated production of a W boson and top quark is measured using data from proton-proton collisions at √ s = 13 TeV. The dataset corresponds to an integrated luminosity of 3.2 fb−1 , and was collected in 2015 by the ATLAS detector at the Large Hadron Collider at CERN. Events are selected requiring two opposite sign isolated leptons and at least one jet; they are separated into signal and control regions based on their jet multiplicity and the number of jets that are identified as containing b hadrons. The W t signal is then separated from the tt¯ background using boosted decision tree discriminants in two regions. The cross-section is extracted by fitting templates to the data distributions, and is measured to be σW t = 94±10 (stat.) +28 −22 (syst.)±2 (lumi.) pb. The measured value is in good agreement with the SM prediction of σtheory = 71.7±1.8 (scale)± 3.4 (PDF) pb [1]

    Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at s√=13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton–proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb−1 are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered

    Measurements of photo-nuclear jet production in Pb + Pb collisions with ATLAS

    Get PDF
    Ultra-peripheral heavy ion collisions provide a unique opportunity to study the parton distributions in the colliding nuclei via the measurement of photo-nuclear jet production. An analysis of jet production in ultra-peripheral Pb+Pb collisions at √sNN = 5.02 TeV performed using data collected with the ATLAS detector in 2015 is described. The data set corresponds to a total Pb+Pb integrated luminosity of 0.38 nb⁻¹. The ultra-peripheral collisions are selected using a combination of forward neutron and rapidity gap requirements. The cross-sections, not unfolded for detector response, are compared to results from Pythia Monte Carlo simulations re-weighted to match a photon spectrum obtained from the STARlight model. Qualitative agreement between data and these simulations is observed over a broad kinematic range suggesting that using these collisions to measure nuclear parton distributions is experimentally realisable

    Measurements of photo-nuclear jet production in Pb plus Pb collisions with ATLAS

    Get PDF
    Ultra-peripheral heavy ion collisions provide a unique opportunity to study the parton distributions in the colliding nuclei via the measurement of photo-nuclear jet production. An analysis of jet production in ultra-peripheral Pb+Pb collisions at √sNN = 5.02 TeV performed using data collected with the ATLAS detector in 2015 is described. The data set corresponds to a total Pb+Pb integrated luminosity of 0.38 nb−1. The ultra-peripheral collisions are selected using a combination of forward neutron and rapidity gap requirements. The cross-sections, not unfolded for detector response, are compared to results from Pythia Monte Carlo simulations re-weighted to match a photon spectrum obtained from the STARlight model. Qualitative agreement between data and these simulations is observed over a broad kinematic range suggesting that using these collisions to measure nuclear parton distributions is experimentally realisable

    Measurement of top quark pair differential cross-sections in the dilepton channel in pppp collisions at s√s = 7 and 8 TeV with ATLAS

    Get PDF
    See paper for full list of authors - 33 pages plus author list (50 pages total), 11 figures, 10 tables, submitted to Phys. Rev. D, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2015-07/Measurements of normalized differential cross-sections of top quark pair (ttˉt\bar t) production are presented as a function of the mass, the transverse momentum and the rapidity of the ttˉt\bar t system in proton-proton collisions at center-of-mass energies of s\sqrt{s} = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb1^{-1} at 7 TeV and 20.2 fb1^{-1} at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a bb-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of ttˉt\bar t production. The results are consistent with the majority of predictions in a wide kinematic range
    corecore