60 research outputs found

    DĂ©veloppement de biocapteurs ampĂ©romĂ©triques pour la dĂ©termination de l’activitĂ© de la transcĂ©tolase et pour la dĂ©tection d’inhibiteurs de cette enzyme

    Get PDF
    Some recent studies have shown that human transketolase (TK, EC 2.2.1.1.), which thiamine diphosphate (active form of vitamin B1) is the cofactor, is involved in numerous disease such as diabete, some cancers and neurodegenerative diseases as Alzheimer’s disease and Wernicke-Korsakoff syndrome. For therapeutic purposes, TK inhibitors have been designed and synthesized in both academic and industrial fields. To determine TK activity (diagnostic) on the one hand, and to detect potential inhibitors of this enzyme (therapeutic) on the other hand, it is necessary to develop fast, sensitive and low cost assays. In this context, we designed some original amperometric biosensors that combine these advantages and were never studied with TK from now. We performed a first galactose oxidase (GAOx, EC 1.1.3.9) biosensor for E. coli and human TK activities detection. For that purpose, GAOx was immobilized on laponite matrix. Then, we designed a GAOx-TK biosensor by co-immobilization of GAOX and TK on the electrode surface that enabled the detection TK inhibitors with a reusable system. Thence, TK was immobilized in Layered Double Hydroxides (HDL). This bilayer and bi-enzymic biosensors, allowed us to determine the inhibitor potencies of several cofactors and substrates analogues as model compounds.Depuis peu, des travaux ont montrĂ© que chez l’Homme, la transcĂ©tolase (TK, EC 2.2.1.1.) dont le cofacteur est la thiamine diphosphate (forme active de la vitamine B1), est une enzyme impliquĂ©e dans de nombreuses maladies telles que, le diabĂšte, certains cancers, ou encore des maladies neurologiques, comme le syndrome de Wernicke-Korsakoff et la maladie d’Alzheimer. Pour des applications thĂ©rapeutiques, des inhibiteurs spĂ©cifiques de cette enzyme sont actuellement conçus et synthĂ©tisĂ©s dans les milieux acadĂ©miques et industriels. Afin de dĂ©terminer l’activitĂ© de la TK (dans un but de diagnostic) d’une part, et de dĂ©tecter des inhibiteurs potentiels de cette enzyme (dans un but thĂ©rapeutique) d’autre part, il est nĂ©cessaire de disposer de tests alliant rapiditĂ©, sensibilitĂ© et faible coĂ»t. Nous avons envisagĂ© d’utiliser des biocapteurs ampĂ©romĂ©triques qui combinent l’ensemble de ces avantages, et qui, de plus, n’ont jamais Ă©tĂ© mis en oeuvre avec la TK. Pour la dĂ©termination de l’activitĂ© des TK d’E. coli et humaine libres en solution, nous avons tout d’abord Ă©laborĂ© un premier biocapteur Ă  galactose oxydase (GAOx, EC 1.1.3.9), dans lequel cette enzyme est immobilisĂ©e sur la laponite. Puis, dans le but de detecter des inhibiteurs de la TK, avec un systĂšme rĂ©utilisable, nous avons developpĂ© un biocapteur Ă  GAOx-TK d’E. coli, les deux enzymes Ă©tant co-immobilisĂ©es Ă  la surface de l’électrode. Pour cela la TK a Ă©tĂ© immobilisĂ©e dans des Hydroxydes Doubles Lamellaires (HDL). Ce biocapteur bicouche et bi-enzymatique GAOx-TK, nous a permis d’évaluer l’effet d’inhibiteurs, tels que diffĂ©rents analogues du cofacteur et de substrats pris comme modĂšles

    Cathepsin K in lymphangioleiomyomatosis: LAM cell-fibroblast Interactions enhance protease activity by extracellular acidification

    Get PDF
    Lymphangioleiomyomatosis (LAM) is a rare disease in which clonal ‘LAM’ cells infiltrate the lungs and lymphatics. In association with recruited fibroblasts, LAM cells form nodules adjacent to lung cysts. It is assumed LAM nodule derived proteases lead to cyst formation although, this is uncertain. We profiled protease gene expression in whole lung tissue and observed cathepsin K was 40 fold over-expressed in LAM compared with control lungs (p≀0.0001). Immunohistochemistry confirmed cathepsin K protein in LAM nodules but not control lungs. Cathepsin K gene expression, protein and protease activity was detected in LAM associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immune reactivity was predominantly co-localised with LAM associated fibroblasts. In vitro, extra-cellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced in fibroblast cultures at pH 7 and 6. 621-101 cells reduced extracellular pH by 0.5 units over 24 hours. Acidification was dependent upon 621-101 cell mTOR activity and net hydrogen ion transporters, particularly sodium/bicarbonate co-transporters and carbonic anhydrases which were also expressed in LAM lung tissue. In LAM cell/fibroblast co-cultures, acidification paralleled cathepsin K activity and both were inhibited by sodium bicarbonate co-transporter (p≀0.0001) and carbonic anhydrase inhibitors (p=0.0021). Our findings suggest cathepsin K activity is dependent on LAM cell/fibroblast interactions and inhibitors of extracellular acidification may be potential therapies for LAM

    Table 2: Anti-tumor agents for targeting hypoxia-induced CA IX for therapy and diagnosis.

    Get PDF
    The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors

    Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy

    Get PDF

    Development of amperometric biosensors for the determination of the activity of transketolase and for the detection of inhibitors of this enzyme

    No full text
    Depuis peu, des travaux ont montrĂ© que chez l’Homme, la transcĂ©tolase (TK, EC 2.2.1.1.) dont le cofacteur est la thiamine diphosphate (forme active de la vitamine B1), est une enzyme impliquĂ©e dans de nombreuses maladies telles que, le diabĂšte, certains cancers, ou encore des maladies neurologiques, comme le syndrome de Wernicke-Korsakoff et la maladie d’Alzheimer. Pour des applications thĂ©rapeutiques, des inhibiteurs spĂ©cifiques de cette enzyme sont actuellement conçus et synthĂ©tisĂ©s dans les milieux acadĂ©miques et industriels. Afin de dĂ©terminer l’activitĂ© de la TK (dans un but de diagnostic) d’une part, et de dĂ©tecter des inhibiteurs potentiels de cette enzyme (dans un but thĂ©rapeutique) d’autre part, il est nĂ©cessaire de disposer de tests alliant rapiditĂ©, sensibilitĂ© et faible coĂ»t. Nous avons envisagĂ© d’utiliser des biocapteurs ampĂ©romĂ©triques qui combinent l’ensemble de ces avantages, et qui, de plus, n’ont jamais Ă©tĂ© mis en oeuvre avec la TK. Pour la dĂ©termination de l’activitĂ© des TK d’E. coli et humaine libres en solution, nous avons tout d’abord Ă©laborĂ© un premier biocapteur Ă  galactose oxydase (GAOx, EC 1.1.3.9), dans lequel cette enzyme est immobilisĂ©e sur la laponite. Puis, dans le but de detecter des inhibiteurs de la TK, avec un systĂšme rĂ©utilisable, nous avons developpĂ© un biocapteur Ă  GAOx-TK d’E. coli, les deux enzymes Ă©tant co-immobilisĂ©es Ă  la surface de l’électrode. Pour cela la TK a Ă©tĂ© immobilisĂ©e dans des Hydroxydes Doubles Lamellaires (HDL). Ce biocapteur bicouche et bi-enzymatique GAOx-TK, nous a permis d’évaluer l’effet d’inhibiteurs, tels que diffĂ©rents analogues du cofacteur et de substrats pris comme modĂšles.Some recent studies have shown that human transketolase (TK, EC 2.2.1.1.), which thiamine diphosphate (active form of vitamin B1) is the cofactor, is involved in numerous disease such as diabete, some cancers and neurodegenerative diseases as Alzheimer’s disease and Wernicke-Korsakoff syndrome. For therapeutic purposes, TK inhibitors have been designed and synthesized in both academic and industrial fields. To determine TK activity (diagnostic) on the one hand, and to detect potential inhibitors of this enzyme (therapeutic) on the other hand, it is necessary to develop fast, sensitive and low cost assays. In this context, we designed some original amperometric biosensors that combine these advantages and were never studied with TK from now. We performed a first galactose oxidase (GAOx, EC 1.1.3.9) biosensor for E. coli and human TK activities detection. For that purpose, GAOx was immobilized on laponite matrix. Then, we designed a GAOx-TK biosensor by co-immobilization of GAOX and TK on the electrode surface that enabled the detection TK inhibitors with a reusable system. Thence, TK was immobilized in Layered Double Hydroxides (HDL). This bilayer and bi-enzymic biosensors, allowed us to determine the inhibitor potencies of several cofactors and substrates analogues as model compounds

    Développement de biocapteurs ampérométriques pour la détermination de l'activité de la transcétolase et pour la détection d'inhibiteurs de cette enzyme

    No full text
    Depuis peu, des travaux ont montré que chez l Homme, la transcétolase (TK, EC 2.2.1.1.) dont le cofacteur est la thiamine diphosphate (forme active de la vitamine B1), est une enzyme impliquée dans de nombreuses maladies telles que, le diabÚte, certains cancers, ou encore des maladies neurologiques, comme le syndrome de Wernicke-Korsakoff et la maladie d Alzheimer. Pour des applications thérapeutiques, des inhibiteurs spécifiques de cette enzyme sont actuellement conçus et synthétisés dans les milieux académiques et industriels. Afin de déterminer l activité de la TK (dans un but de diagnostic) d une part, et de détecter des inhibiteurs potentiels de cette enzyme (dans un but thérapeutique) d autre part, il est nécessaire de disposer de tests alliant rapidité, sensibilité et faible coût. Nous avons envisagé d utiliser des biocapteurs ampérométriques qui combinent l ensemble de ces avantages, et qui, de plus, n ont jamais été mis en oeuvre avec la TK. Pour la détermination de l activité des TK d E. coli et humaine libres en solution, nous avons tout d abord élaboré un premier biocapteur à galactose oxydase (GAOx, EC 1.1.3.9), dans lequel cette enzyme est immobilisée sur la laponite. Puis, dans le but de detecter des inhibiteurs de la TK, avec un systÚme réutilisable, nous avons developpé un biocapteur à GAOx-TK d E. coli, les deux enzymes étant co-immobilisées à la surface de l électrode. Pour cela la TK a été immobilisée dans des Hydroxydes Doubles Lamellaires (HDL). Ce biocapteur bicouche et bi-enzymatique GAOx-TK, nous a permis d évaluer l effet d inhibiteurs, tels que différents analogues du cofacteur et de substrats pris comme modÚles.Some recent studies have shown that human transketolase (TK, EC 2.2.1.1.), which thiamine diphosphate (active form of vitamin B1) is the cofactor, is involved in numerous disease such as diabete, some cancers and neurodegenerative diseases as Alzheimer s disease and Wernicke-Korsakoff syndrome. For therapeutic purposes, TK inhibitors have been designed and synthesized in both academic and industrial fields. To determine TK activity (diagnostic) on the one hand, and to detect potential inhibitors of this enzyme (therapeutic) on the other hand, it is necessary to develop fast, sensitive and low cost assays. In this context, we designed some original amperometric biosensors that combine these advantages and were never studied with TK from now. We performed a first galactose oxidase (GAOx, EC 1.1.3.9) biosensor for E. coli and human TK activities detection. For that purpose, GAOx was immobilized on laponite matrix. Then, we designed a GAOx-TK biosensor by co-immobilization of GAOX and TK on the electrode surface that enabled the detection TK inhibitors with a reusable system. Thence, TK was immobilized in Layered Double Hydroxides (HDL). This bilayer and bi-enzymic biosensors, allowed us to determine the inhibitor potencies of several cofactors and substrates analogues as model compounds.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    An efficient amperometric transketolase assay:Towards inhibitor screening

    No full text
    International audienceThis paper describes an innovative amperometric biosensor for the in vitro determination of activity of transketolase from Escherichia coli (TKec) using commercially available TK substrates, namely d-fructose-6-phosphate a physiological donor and glycolaldehyde the best non-phosphorylated acceptor. A galactose oxidase (GAOx) biosensor, based on the immobilization of this enzyme within laponite clay, allows amperometric detection of l-erythrulose released upon TK-catalyzed reaction. A calibration curve has been established from 0.01 to 0.1 U ml−1 TKec concentration in solution. These data are comparable to that obtained by a fluorometric method. In order to ensure a higher sensitivity and re-usability of the system, an original bienzymatic sensing system was further developed based on apoenzyme TKec and GAOx separately immobilized on the electrode surface. The inner sensing layer contains GAOx@laponite and the outer layer TKec@layered double hydroxide biohybrid. The biosensor response was validated by the determination of KDapp for thiamine diphosphate, the TK cofactor and the inhibition action of two commercially available products, pyrophosphate, a TK cofactor analog and d-arabinose-5-phosphate, a substrate analog

    Galactose Oxidase/Prussian Blue Based Biosensors.

    No full text
    International audienceThis paper describes the development of an amperometric biosensor based on galactose oxidase (GAOx) immobilization within a laponite clay film deposited on Carbon Screen-Printed Electrodes modified by electrodeposited Prussian Blue and coated with poly-(O-phenylenediamine) (PPD/PB/CSPEs). Amperometric performances of GAOx@laponite/PPD/PB/CSPEs bioelectrodes were determined using several GAOx substrates. Using these modified electrodes the reduction of enzymatically generated hydrogen peroxide was performed at −0.2 V vs. Ag-AgCl. In an initial attempt, E.Coli transketolase activity on its immobilized form was followed using a bienzymatic GAOx-TK biosensor
    • 

    corecore