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Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An update on anticancer drug
development and delivery targeting
carbonic anhydrase IX
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ABSTRACT
The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid
tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA
IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been
shown to reverse the acidic environment of solid tumors and reduce the tumor growth
establishing the significant role of CA IX in tumorigenesis. Thus, the development
of potent antitumor drugs targeting CA IX with minimal toxic effects is important
for the target-specific tumor therapy. Recently, several promising antitumor agents
against CA IX have been developed to treat certain types of cancers in combination with
radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule
compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical
methods, animal models including zebrafish and Xenopus oocytes, and techniques
of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are
discussed with the aim to overview the recent progress related to novel therapeutic
agents that target CA IX in hypoxic tumors.

Subjects Biochemistry, Biophysics, Drugs and Devices
Keywords CA IX monoclonal antibodies, Hypoxic tumors, CA IX antitumor agents, Carbonic
anhydrase IX, Drug development, Conjugated probes

Introduction
Recent advances in cancer therapy show that hypoxia is the major contributor to tumor
development (Semenza, 2014; Hanahan &Weinberg, 2011). The poor and chaotic tumor
angiogenesis leads to the insufficient oxygen and nutrient supply which drastically affects
the cellular metabolism (Welti et al., 2013). Due to the up-regulated glycolysis, tumor
cells produce increased amounts of lactate and protons. As a consequence of mTORC1&2
mediated functional and transcriptional activation of c-Myc, tumor cells tend tometabolize
glucose preferably via glycolysis rather than oxidative phosphorylation despite sufficient
levels of oxygen. This phenomenon is known as Warburg effect (Warburg, 1956; Vander
Heiden, Cantley & Thompson, 2009). The resultant hypoxic and acidic extracellular milieu
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significantly increases the resistance of cancer cells to chemotherapy and radiotherapy
as well as promotes invasiveness and metastasis (Wojtkowiak et al., 2011; Good &
Harrington, 2013).

Hypoxia stimulates crucial pathways, one of which is implemented by the activation of
the heterodimeric hypoxia-inducible factor (HIF) (Denko, 2008). This hypoxia-induced
transcriptional program is important for tumor cells to survive harsh conditions. There
are many downstream-target genes of HIF, which encode proteins, such as adhesion
molecules (Ryu et al., 2010), matrix metalloproteinases (O’Toole et al., 2008), chemokine
receptors (Li et al., 2009a), growth factors (Kotch et al., 1999), differentiation proteins
(Takubo et al., 2010), glycolytic enzymes (Obach et al., 2004), lactate transporters (Ullah,
Davies & Halestrap, 2006), and ion transporters (Parks, Chiche & Pouysségur, 2013). Some
HIF-regulated proteins have been shown to be hypoxia-related anticancer targets and
possess therapeutic applications (Wilson & Hay, 2011). Thus, HIF is critically essential
for cancer cells to survive and metastasize in the hostile tumor environment due to the
HIF-dependent activation of oncogenes and inactivation of tumor suppressor genes.

As a consequence of HIF-mediated transcriptional response to tumor hypoxia, the
intracellular and extracellular pH is unbalanced. Normal cells differ from cancer cells
by the mechanisms of pH regulation, which create the reversed pH gradient in tumors.
Physiologically the intracellular pH (pHi) is lower than the extracellular pH (pHe), which is
∼7.4. Pathologically pHi is higher than pHe, which is 6.7–7.1 (Hashim et al., 2011;Mazzio,
Smith & Soliman, 2010). This phenomenon of extracellular acidification under hypoxic
conditions is created by HIF-dependent induction of proteins, such as transmembrane
enzymes, ion pumps, and transporters. They export lactate and protons and import
bicarbonate ions to optimize the tumor progression. Key pH-regulators are V-ATPase,
Na+/H+ exchanger (NHE),monocarboxylate transporters (MCTs) and carbonic anhydrase
(CA) IX.

There are seven evolutionarily distinct CA gene families: α-, β-, γ-, δ-, ζ- η-, and
θ-CAs (Prete et al., 2014; Supuran & Capasso, 2015; Krishnamurthy et al., 2008; Kikutani
et al., 2016; Aggarwal et al., 2013; Capasso & Supuran, 2015). In humans, there are 15
α-CA isoforms, of which 12 are catalytically active and exhibit diverse enzymatic activity,
various cellular distribution and physiological functions (Frost, 2014). Being a member of
α-CA isoforms in human body, CA IX is a transmembrane homodimer, which catalyzes
the reversible hydration of carbon dioxide to bicarbonate and proton outside the cell.
The intracellular pH of cancer cells is regulated by the export of lactate and protons
and on the import of bicarbonate ions generated by the hydration of CO2. The acidic
metabolites accumulate pericellularly because of the ineffective tumor vasculature and
extracellular acidosis. To reduce changes of intracellular pH, the bicarbonate is transported
into the cell through the bicarbonate transport metabolon composed of CA IX and
bicarbonate transporters. Thereby CA IX is important for cancer cell proliferation because
of the participation in both processes: the extracellular acidification and the intracellular
alkalinization (Aggarwal et al., 2013; Alterio et al., 2009).

CA IX is relevant not only for the cancer cell survival, but also to several other biological
processes, such as the maintenance of cancer stem cell (CSC) function, migration, and
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invasion. Cell migration depends on the formation of lamellipodia, which have been
shown to be partially produced by activation of CA IX and its interaction with bicarbonate
transporters (Svastova et al., 2012). In addition, acidosis under hypoxic conditions activates
proteolytic enzymes, which degrade the extracellular matrix and promote metastasis
formation. Thus, CA IX targeting compounds have shown to significantly diminish the
cancer stem cell population, inhibit the growth of primary tumors, and reduce metastatic
burden (Swietach et al., 2010; Pastorek & Pastorekova, 2015; Sedlakova et al., 2014; Lock et
al., 2013;McDonald et al., 2010).

In normal tissues, the expression of CA IX is negligible with the exception of the stomach
and gallbladder epithelia (Pastorekova et al., 1997). There is a broad spectrum of aggressive
malignancies, where CA IX is predominantly overexpressed, namely, neuroblastoma
(Ameis et al., 2016), breast tumor (Betof et al., 2012), head and neck tumors (Yang et al.,
2014), ovarian tumor (Choschzick et al., 2011), pancreatic tumor (Couvelard et al., 2005),
hepatocellular carcinoma (Huang et al., 2015), etc. In addition, there are several reviews,
which summarize the significance of CA IX as a promising biomarker for the tumor
development (Van Kuijk et al., 2016). Thus, CA IX has emerged as the clinically relevant
biomarker and a potential anticancer-drug target.

At the core of α-CA active site, the metal ion, Zn (II), is tetrahedrally coordinated to
three imidazole rings from His94, 96, and 119 (numbering according to CA II) and a
water/hydroxide anion (Fisher et al., 2007). The catalytic site is located at approximately 15
Å depth conical cavity which consists of hydrophobic (Val121, Val143, Leu198, Val207,
Trp209) as well as hydrophilic (Tyr7, Asn62, His64, Asn67, Thr199, Thr200) regions and
provides the accessibility to the solvent (Krishnamurthy et al., 2008; Eriksson, Jones & Liljas,
1988; Pocker & Sarkanen, 1978).

A high conservation of amino acids in the active site and surrounding faces has been
found among the 12 catalytically active human CA isoforms (Aggarwal et al., 2013; Pinard
et al., 2015). Thus, the design of CA isoform-selective inhibitors has been the challenging
goal for many researchers. In 1954, acetazolamide was approved in clinic as the first
CA-targeting antiglaucoma drug (Supuran, 2012). In the next decades, a vast collection
of CA inhibitors with various affinities and selectivities has been designed and has been
extensively reviewed (Lomelino & McKenna, 2016; Supuran, 2016; Supuran, 2017; Alterio et
al., 2012;Monti, Supuran & De Simone, 2013).

It is a challenging task to design inhibitors that would be not only highly selective to CA
IX, but also safe for use in humans for the treatment and diagnosis of hypoxic tumors.Many
aspects need to be considered to achieve the final goal of developing the promising drugs,
that could selectively inhibit CA IX in hypoxic tumors. The knowledge about the active
site structure of the protein and permeability of the inhibitor across the cell membrane
is essential for designing the CA IX specific inhibitors. An inhibitor may be selective for
CA IX, but it may need to be attached to a conjugate to make it impermeable through the
membrane.

Similarly, the potential inhibitors need to go through the physical and biochemical
screening and various modifications to develop as CA IX isoform specific compounds. The
most promising CA IX inhibitors have to be screened for safety and toxicity in vivo using
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animal models, such as zebrafish, before subjecting them to preclinical characterization. In
addition to chemical compounds, CA IX-selective biologicalmolecules, such asmonoclonal
antibodies (mAbs), are at various stages of preclinical and clinical trials as potential
anticancer agents targeting CA IX in hypoxic tumors. In addition, the anticancer agents
based on CA IX selective inhibitors can be conjugated with various probes for the diagnosis
of hypoxic tumors.

SURVEY METHODOLOGY
A wide variety of chemical compounds have been described in the literature that
target tumor-associated CA IX. In this review, we selectively describe only aromatic
sulfonamides that have been demonstrated to bind and inhibit the catalytic domain of
recombinant human CA IX by at least two experimental approaches, such as inhibition
of enzymatic activity and biophysical assays including the fluorescent thermal shift
assay (FTSA), isothermal titration calorimetry (ITC), and surface plasmon resonance
(SPR). We emphasize the use of non-mammalian animal models, such as zebrafish
and Xenopus oocytes for the toxicity, affinity, and selectivity studies of CA IX targeting
sulfonamides. Published in 2016–2017, these studies suggest possibilities that could help in
the development of antitumor agents prior to preclinical characterization in mice models.

For reviewing the information, we identified the articles containing information about
different biological and chemical antitumor agents that target CA IX in hypoxic tumors.
The literature search was performed using the relevant keywords in PubMed. For example,
the antibody section was compiled with all available articles published since 1986 up to
2017, in which the use of antibodies for the detection of CA IX in patients was described.
Publications were retained if they contained relevant information about the promising
agents that target CA IX in humans and also during the development of these agents in
human cell lines and mice models. Priority was given to the antitumor agents that have
been developed either for the treatment or imaging of the tumors using novel strategies.

The focus of this review is also to present recent developments in the treatment and
diagnosis of solid tumors under hypoxic conditions that express CA IX. We present the
recent achievements on the 8 diagnostic tools including chemical and biological antitumor
agents targeting CA IX that are at various stages of preclinical and clinical trials for
treating the hypoxic tumors. This review combines the information about animal models,
enzymatic, biophysical methods used in CA field, as summarized in Fig. 1, with the latest
references of novel anticancer agents that are currently applied to target CA IX for the
diagnosis and treatment.

CA INHIBITOR ASSAYS
CA enzymatic activity inhibition assay
To evaluate the potency of CA-targeting inhibitor, the stopped-flow CO2 hydration assay
(SFA) has been widely applied for more than five decades since the discovery of the
method to measure CA catalyzed CO2 hydration rate by Gibbsons and Edsall and by
Khalifah (Gibbons & Edsall, 1963; Gibbons & Edsall, 1964; Khalifah, 1971). This approach
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Figure 1 Methods which might be applied for developing CA IX-targeting compounds before pre-
clinical characterization in tumor cells andmice.

Full-size DOI: 10.7717/peerj.4068/fig-1

is based on the monitoring of the changes in absorbance of pH sensitive indicator upon
CA catalyzed CO2 hydration reaction. The half-maximal inhibitory concentration, IC50, is
determined by fitting the compound dose curve according to the Hill model or Morrison
equation (Morrison, 1969). The inhibition constant, Ki, can be obtained from IC50 value
by Cheng-Prusoff equation (Cheng & Prusoff, 1973).

Supuran and co-authors have developed a large library of CA inhibitors by SFA and
divided them into five groups according to CA inhibition mechanisms: (1) the zinc binders
(sulfonamides and their isosteres, dithiocarbamates and their isosteres, hydroxamates, etc.)
(Supuran, 2012; Alterio et al., 2012; Carta et al., 2013; Innocenti, Scozzafava & Supuran,
2010;Carta et al., 2012; Supuran, 2013); (2) compounds that anchor to the zinc-coordinated
water molecule/hydroxide ion (phenols, polyamines, sulfocoumarins, etc.) (Nocentini et
al., 2016; Davis et al., 2014; Carta et al., 2010; Innocenti et al., 2008; Santos et al., 2007); (3)
inhibitors which occlude the entrance to the CA active site (coumarins and their isosteres)
(Nocentini et al., 2015; Bozdag et al., 2017; Tars et al., 2013); (4) compounds which bind
out of the active site (carboxylic acid derivates) (D’Ambrosio et al., 2015); (5) inhibitors
which bind in an unknown way (secondary/tertiary sulfonamides, imatinib, nilotinib, etc.)
(Parkkila et al., 2009; Supuran, 2016; Métayer et al., 2013). Since these various compounds
have been subject of numerous recent reviews, here we concentrate only on aromatic
sulfonamides as CA inhibitors. Supuran’s group also measured the affinity of monoclonal
antibodies to target CA isoforms using SFA (Dekaminavičiūtė et al., 2014). In addition to
other previously synthesized compounds containing fluorine, our group has identified a
series of fluorinated benzenesulfonamides as strong CA IX inhibitors by SFA and have
shown a correlation between parameters obtained by enzymatic and biophysical assays
(Dudutienė et al., 2014).

Importantly, CA isoforms share not only hydratase, but also esterase activity which was
discovered in early 1960s (Tashian, Douglas & Yu, 1964). Both reactions occur in the same
catalytic pocket suggesting similarities in their mechanisms. The method to determine
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esterase activity is a high-throughput colorimetric assay with various applications, such as
screening chemical molecules or antibodies against CA isozymes (Akıncıoğlu et al., 2013;
Uda et al., 2015).

Biophysical assays of inhibitor binding to CAs
Advantages and limitations of enzymatic inhibition versus biophysical assays of inhibitor
binding have been assessed and are compared in our recent manuscript (Smirnovienė,
Smirnovas & Matulis, 2017). Biophysical methods not only determine the thermodynamic
parameters of ligand binding to CAs, but also provide insight into numerous significant
factors, which influence the binding: local water structure, hydrogen bonding, hydrophobic
interactions, and desolvation. The thermodynamic profiles of drug candidate binding to
CA have been widely used. Here we will focus on biophysical techniques, such as fluorescent
thermal shift assay (FTSA), isothermal titration calorimetry (ITC), and surface plasmon
resonance (SPR), which have been applied in the rational drug design of isoform-selective
CA inhibitors.

Isothermal titration calorimetry
Since the invention of first analog of an isothermal titration calorimeter in 1966 (Izatt et
al., 1966; Christensen et al., 1966) and its modifications for biological applications in 1980s
(Ramsay, Prabhu & Freire, 1986; Schön & Freire, 1989), ITC has become the method of
choice to study protein target-ligand interactions. During the experiment, in the current
commercial titration calorimeters, the inhibitor solution from the syringe is injected at con-
stant temperature into the protein solution preloaded to the calorimeter cell until all binding
sites of the protein become occupied by the ligand. Importantly, ITC does not require the
inhibitor or protein to be labeled or immobilized and allows the determination of the
affinity, the binding enthalpy and the stoichiometry in a single titration experiment (Klebe,
2015; Krimmer & Klebe, 2015; Geschwindner, Ulander & Johansson, 2015; Falconer, 2016).

Numerous studies of interactions between diverse ligands and target CA isoforms have
been performed by ITC (Krishnamurthy et al., 2008; DiTusa et al., 2001; Khalifah et al.,
1993). The binding of anions to CA II was evaluated using ITC, X-ray crystallography,
and molecular dynamics simulations by Whitesides group (Fox et al., 2015). For the
deeper understanding of structure–activity relationships, the analysis of buffer ionization
effects was performed by ITC upon an inhibitor binding to recombinant human CA
isoforms, including CA I (Morkūnaitė et al., 2015), CA II (Morkūnaitė et al., 2015), CA
VB (Kasiliauskaitė et al., 2015), CA VI (Kazokaitė et al., 2015), CA VII (Pilipuitytė &
Matulis, 2015), CA IX (Linkuvienė et al., 2016), CA XII (Jogaitė et al., 2013), and CA XIII
(Baranauskienė & Matulis, 2012). In addition, ITC standard and displacement titrations
were combined with the X-ray crystallographic structures to determine the intrinsic,
buffer-independent affinity of para substituted tetrafluorobenzenesulfonamides binding
to several human CA isoforms (Zubrienė et al., 2015).

Fluorescent thermal shift assay
FTSA, also called differential scanning fluorimetry and, in high-throughput format,
ThermoFluor R©, has been widely applied by numerous researchers and companies, such as
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Johnson & Johnson, New Brunswick, United States. It is a rapid screening method in the
drug discovery to measure the binding affinities of chemical compounds to targets (Kranz
& Schalk-Hihi, 2011; Lo et al., 2004; Pantoliano et al., 2001; Niesen, Berglund & Vedadi,
2007). FTSA monitors the equilibrium of a protein between its folded and unfolded states
by detecting the fluorescence of solvatochromic probes, such as 1,8-anilinonaphthalene
sulfonate or SYPRO R© orange, while the temperature is steadily increased. This method
determines the protein melting temperature which can be highly affected by the affinity
of ligand and its concentration (Cimmperman & Matulis, 2011; Cimmperman et al., 2008).
In addition, FTSA is a convenient technique to characterize protein thermal stabilities
at various conditions including diverse buffers, excipients, etc (Mezzasalma et al., 2007;
Cummings, Farnum & Nelen, 2006).

FTSA has been widely applied in the search of CA inhibitors. The binding of
sulfamate and sulfamide derivatives to human CA II was investigated using FTSA
by Klinger et al. (2006). FTSA was also applied by our group to investigate the
interactions between human CA isoforms and various series of inhibitors, including
tri- and tetrafluorobenzenesulfonamides (Dudutienė et al., 2013; Dudutienė et al.,
2015), benzenesulfonamide derivatives with pyrimidine moieties (Čapkauskaitė et al.,
2013), saccharin sulfonamides (Morkūnaitė et al., 2014), benzenesulfonamides with
benzimidazole moieties (Zubrienė et al., 2014), 4-amino-substituted benzenesulfonamides
(Rutkauskas et al., 2014). In addition, the profiles of thermal stabilities of recombinant
human CA VB (Kasiliauskaitė et al., 2015), CA VI (Kazokaitė et al., 2015), CA IX
(Linkuvienė et al., 2016), and CA XII (Jogaitė et al., 2013) was described using FTSA.

Surface plasmon resonance
SPR was first demonstrated for the monitoring of biomolecular interactions by Lundstrom
et al. in 1983 (Liedberg, Nylander & Lunström, 1983) and the first commercial SPR
instrument was launched by Pharmacia Biosensors AB in 1991 (Jönsson et al., 1991).
During the last decades, SPR biosensors have become the state-of-the-art technology in
diagnostics and biomedical research to determine a real-time kinetics and binding affinities
of ligand-protein interactions. To screen lead compounds, one of the binding partners,
usually the target protein, is immobilized on a metal surface and the ligand flows over that
surface by microfluidic system. SPR is a label-free optical method, which measures the
changes in refractive index at the metal surface upon the binding reaction.

Studies of SPR application in CA research used recombinant human CA I (Jecklin et al.,
2009) or mostly CA II (Myszka, 2004; Navratilova & Hopkins, 2010; Papalia et al., 2006)
isoform as a model for the screening of numerous inhibitors. In contrast, Talibov et al.
immobilized six human recombinant CA isoforms (full-length CA I, CA II, CA VII, CA
XIII, catalytic domains of CA IX and CA XII) and analyzed their interactions with 17
benzenesulfonamide ligands by SPR. Interestingly, results revealed one compound from
investigated series to be as a tight binder to recombinant CA IX with the dissociation rates
too slow to be determined by SPR (Talibov et al., 2016).
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Zebrafish model for compound toxicity
Phenotype-based screening using zebrafish has become a promising high-throughput
assay for the drug discovery. This approach revealed that 62%, of drugs approved from
1999 till 2008, were discovered by phenotype-based screens despite that they represented
only a small fraction of all screens (MacRae & Peterson, 2015). Phenotypic screens possess
many significant advantages over target-based screens including the identification of drugs
without a validated target or the characterization of the therapeutic profile of the compound,
which affects several targets simultaneously. Zebrafish has emerged as a powerful model
system for phenotypic screens of drug-candidates in vivo because of many advantages that
include high homology between zebrafish and mammalian CAs, low cost, and avoidance
of most ethical issues associated with the use of other animals. However, zebrafish lack
lung, prostate, and mammary glands, heart septation, limbs, and it is necessary to grow
zebrafish at 30 ◦C, while compounds against mammalian targets are usually optimized for
37 ◦C (Lin, Chiang & Tsai, 2016; Rennekamp & Peterson, 2015).

Zebrafish can be particularly useful to carry out toxicological studies of CA inhibitors.
Toxic effects of two fluorinated benzenesulfonamides as CA IX inhibitors were investigated
on zebrafish development (Kazokaitė et al., 2016b). LC50 values showed that one compound
exhibited 10-fold lower toxicity than ethoxzolamide (EZA), a compound used as a drug
in humans. In addition, light-field microscopy and histological analysis revealed that EZA
induced side effects such as pericardial edema, unutilized yolk sac and abnormal body
shape of zebrafish. In contrast, developmental abnormalities were not detected in embryos
treated with the fluorinated benzenesulfonamides (Table 1). Thus, this study showed that
CA IX inhibitors did not have adverse effects on phenotype and morphology of zebrafish
larvae. Such toxicological screenings of the compounds using zebrafish could provide
information on the safety of lead molecule that could be useful for further development
into a drug.

Oocyte system for heterologous expression of CAs to determine
compound affinity and selectivity
Since 1960s, the Xenopus laevis has been widely used as a convenient animal model in
various biomedical fields including molecular and physiological research. The Xenopus
oocytes have many advantages including a large number of offspring, easy manipulations
because of their big size (1.1–1.3 mm) and easy maintenance. Furthermore, oocytes feature
highly efficient translation of heterologous RNA into protein.

Native Xenopus oocytes do not possess any CA activity and thus have become a
convenient in vivo model system to investigate CA inhibitors. The enzymatic activity
of CA can be evaluated with microelectrodes while monitoring the intracellular and
extracellular acidification. Results can be confirmed by mass spectrometric gas analysis
of lysed or intact oocytes (Becker, 2014). The transfection of Xenopus oocytes with cRNA
of CA isozymes has been published by Deitmer’s group (Klier et al., 2016; Schneider et al.,
2013). They showed the complete inhibition of CA IX enzymatic activity with 30 µM
EZA according to the rates of cytosolic pH changes and amplitudes of pH changes at the
outer membrane side (Klier et al., 2016). The same effect was found in CA IX expressing
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Table 1 Biological model systems for the investigation of CA IX inhibitors. The compounds did
not show any significant toxicity on zebrafish and possessed nanomolar IC50 for heterologous CA
IX expressed in Xenopus oocytes. In addition, the selectivity of compounds toward CA isoforms was
evaluated according to the effect of compounds on the reduction of extracellular (CA IX, CA IV, and CA
XII) and intracellular (CA II) CA-induced acidification in oocytes (Kazokaitė et al., 2016a; Kazokaitė et al.,
2016b).

Table 1. Biological model systems for the investigation of CA IX inhibitors. The compounds did 
not show any significant toxicity on zebrafish and possessed nanomolar IC50 for heterologous 
CA IX expressed in Xenopus oocytes. In addition, the selectivity of compounds toward CA 
isoforms was evaluated according to the effect of compounds on the reduction of extracellular 
(CA IX, CA IV, and CA XII) and intracellular (CA II) CA-induced acidification in oocytes [119, 
123]. 
 

                          

                Inhibitor 
 
 
   Type of study 

           VD11-4-2

 

              VD12-09        

Toxicology 

 

LC50 = 120 µM

 

LC50 = 13 µM 

Methods: 
1. light-field microscopy 
2. histological analysis 

Affinity and selectivity

 

CA IX: IC50 = 25 nM

CA II: <5.0% effect on pH at 10 µM 

CA IV: 57.8% effect on pH at 10 µM 

CA XII: 28.0% effect on pH at 50 nM 

CA IX: 25.5% effect on pH at 10 µM  

CA II: <5.0% effect on pH at 10 µM 

Methods: 
1. pH monitoring with microelectrodes 
2. mass spectrometric gas analysis 

IC50 - the concentration causing 50% inhibition of target activity, LC50 - 50% lethal concentration. 
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oocytes treated with 1 µM fluorinated benzenesulfonamide targeting CA IX (Kazokaitė et
al., 2016a). The IC50 was found to be in the range of 15–25 nM for both intracellularly and
extracellularly expressed CA IX. Moreover, the compound exhibited strong selectivity over
CA II, CA IV or CA XII in oocytes expressing a particular CA isoform (Table 1). This novel
in vivo approach allows the identification of the affinity and selectivity of CA IX inhibitors
in the living eukaryotic cell with fully matured target CA isozyme.

CA IX-TARGETED STRATEGIES
Targeting CA IX enzyme is a promising approach for the development of new therapeutics
against hypoxic tumors. There are several agents that can selectively target CA IX by using
different strategies. Here, we present therapeutic agents that have been used against CA IX
for diagnosis and treatment of hypoxic tumors in humans (Table 2).

Monoclonal antibodies for CA IX-targeted therapy
M75 and chimeric G250 (cG250) are two widely-applied monoclonal antibodies (mAbs)
recognizing human CA IX. These mAbs have been used for clinical detection or therapy
(Oosterwijk et al., 1986; Závada et al., 1993). The M75 targets the PG-domain of CA IX and
is used for the detection of CA IX in human tissues (Chrastina, Pastoreková & Pastorek,
2003; Chrastina et al., 2003; Zatovicova et al., 2010). cG250 has been successfully developed
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Table 2 Anti-tumor agents for targeting hypoxia-induced CA IX for therapy and diagnosis.

Anti-tumor agents Therapy stage Diagnosis References

SLC-0111 Phase I trial Solid tumors Welichem Biotech Inc
& Ozmosis Research Inc
(2014)

U-104 Preclinical trials Xenograft tumor model
(pancreatic ductal
adenocarcinoma cell line
Pt45.P1/asTF+)

Pacchiano et al. (2011),
Lou et al. (2011),
Ramchandani et al.
(2016)

G250 (girentuximab) Phase III clinical trial ccRCC diagnosis Wilex (2004)
177Lu-labelled
girentuximab

Phase II clinical trials ccRCC diagnosis Pal & Agarwal (2016)

Indisulam Phase I clinical trials Solid tumors Dittrich et al. (2007),
Eisai Limited (2005)

NIR fluorescent
derivative of the
acetazolamide

Preclinical trials Xenograft tumor model Tafreshi et al. (2012)

99mTc-(HE)3-ZCAIX:2 Preclinical trials Disseminated cancer Garousi et al. (2016)
125I-ZCAIX:4 Preclinical trials Primary renal cell

carcinoma
Garousi et al. (2016)

for anticancer immunotherapy (Cardone, Casavola & Reshkin, 2005) due to its ability
to elicit antibody-dependent cellular cytotoxicity (Surfus et al., 1996). The clinical trials
showed that cG250 is safe, and has effect on the disease burden, when applied alone or
together with interferon-α (Davis et al., 2007; Siebels et al., 2011). This mAb is marketed by
WILEX AG using RENCAREX R© as a trade name and has been used for renal cell carcinoma
patients (RCC) who are at high risk of relapse (McDonald et al., 2012). In the recent past,
this mAb under the name of girentuximab, has been assessed as an adjuvant in Phase III
ARISER trial in RCC patients and showed that the patients expressing CA IX benefited
more than ones without or minimal expression of CA IX (Wilex, 2004). In a phase II
study, the mAb labeled with lutetium (177Lu-girentuximab) demonstrated the significantly
positive impact on the progressive metastatic ccRCC patients (Pal & Agarwal, 2016). In
addition, REDECTANE R© (124I-girentuximab) has been in clinical development targeting
ccRCC (Wilex, 2017). Furthermore, A3 and CC7 have been developed as CA IX-selective
mAbs by the phage display method. They showed promising results in animal models of
colorectal cancer and may be useful for the drug delivery (Oosterwijk et al., 1986). These
studies clearly showed that mAbs and their modified versions are potential candidates for
the development as anticancer agents targeting tumors that express CA IX.

Severalmonoclonal antibodies have been developed that influence the catalytic activity of
CA IX (Zat’ovicová et al., 2003). Pastorekova’s group has demonstrated that themAbVII/20
binds to the catalytic domain of CA IX, causing the receptor-mediated internalization of
the antibody-protein complex. Authors have shown that this process is important for
the immunotherapy because significant anticancer effects of VII/20 were found in mouse
xenograft model of colorectal carcinoma (Zatovicova et al., 2010). Thus, the application of
CA IX-targeting antibodies might be significantly beneficial immunotherapeutic strategy.
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Furthermore, mAbs have been considered as the ligands of choice for the design
of antibody-drug conjugates (ADCs). In current clinical development, there are 65
ADCs mostly targeting various proteins at cell surface (Xu, 2015; Beck et al., 2017). Since
antibodies might cause problems related with the penetration or immunogenicity, there
is a demand for smaller agents, such as peptides or chemical derivatives, for the drug
delivery. Recently, Neri with co-authors has described CA IX-targeting small-molecule
drug conjugates. Monovalent and divalent conjugates of acetazolamide with the cytotoxic
maytansinoid DM1 exhibited promising anticancer activity in SKRC52 renal cell carcinoma
in vivo (Krall, Pretto & Neri, 2014; Krall et al., 2014).

Chemical compounds targeting CA IX for therapy
A wide range of CA IX selective inhibitors has been designed with the help of X-ray
crystallography and computational analysis. Among them, a group of sulfonamides show
potential for developing as anticancer agents. A sulfonamide compound, indisulam, has
shown a significant antitumor activity in preclinical cancer models (Dittrich et al., 2007).
Phase II clinical trials were conducted to determine the efficacy, safety and tolerability of
indisulam in combination with irinotecan in patients with metastatic colorectal cancer
who were previously treated with 5-fluorouracil/leucovorin and oxaliplatin (Eisai Limited,
2005) but no further information is available about the outcome of the trial. Similarly,
bis-sulfonamides have shown promising results in vitro in tumor sections and target tumors
in vivo (Buller et al., 2011). Preclinical studies using ureidosulfonamide inhibitor of CA IX,
named as U-104 or SLC-0111 (SignalChem Lifesciences Corp, Richmond, BC, CA), showed
positive effects with the negligible toxicity for the treatment of various tumors (Pacchiano
et al., 2011; Lou et al., 2011). Recently, U-104 has been demonstrated to be effective in vitro
and in vivo models of the pancreatic ductal adenocarcinoma (Pt45.P1/asTF +). U-104
significantly decreased the growth of pancreatic cells in hypoxia but not in normoxia
and reduced the tumor growth in mice emphasizing the potential of the compound as a
therapeutic agent against CA IX (Ramchandani et al., 2016).

Small molecule-drug conjugates (SMDCs) have been used for the selective delivery of
therapeutic agents to tumor sites. The series of stable and therapeutically active SMDCswere
generated by attaching acetazolamide to monomethyl auristatin E using dipeptide linkers.
They showed a promising antitumor activity in mice bearing SKRC-52 renal tumors. Since
CA IX is a transmembrane protein, the findings of this study is significantly important
for the targeted drug delivery in kidney cancer patients (Corso & Neri, 2017). Similarly,
PEGylated bis-sulfonamide CA inhibitors were synthesized from aminosulfonamide
pharmacophores conjugated with either ethyleneglycol oligomeric or polymeric diamines.
These compounds efficiently controlled the growth of several CA IX-expressing cancer
cell lines including colon HT-29, breast MDA-MB-23, and ovarian SKOV-3 (Akocak et al.,
2016).

To demonstrate the antitumor effect of CA IX inhibition in vivo, the vast library of
conjugates against CA IX has been designed. Dual targeting bioreductive nitroimidazole-
based sulfamide drug, named asDH348, was used to evaluate the impact on the extracellular
acidification and radiosensitivity in HT-29 colorectal cancer cells and mouse xenograft
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models. By using nontoxic doses of DH348, the hypoxia-induced extracellular acidification
was significantly reduced and the tumor growth was decreased. DH348 also sensitized
the tumor to irradiation and the effect was CA IX-dependent (Dubois et al., 2013). In
addition, the combination of SLC-0111 and APX3330 has been reported in patient-derived
3D pancreatic cancer models. Results of dual treatment showed a greater decrease in the
intracellular pH and 3D tumor spheroid growth than treatment with either inhibitor alone
(Logsdon et al., 2016). Recently, phase I clinical trial of SLC-0111 has been finished and the
compound was scheduled to enter Phase II trials (Welichem Biotech Inc & Ozmosis Research
Inc, 2014). Since results of phase I trials have not been published, the characterization of
pharmacodynamics and pharmacokinetics of SLC-0111 is not available yet.

Targeting CA IX using nanoparticles
Gold nanoparticles coated with chemical inhibitors are a relatively new to the field of
the development of agents targeting CA IX. The gold nanoparticles modified with CA
IX inhibitors cannot pass through the membrane. Thus, they show a great potency to be
effective in targeting and inhibiting the extracellular active site of CA IX.

The nanoparticles, which were modified with thiols and benzenesulfonamide groups,
selectively inhibited CA IX (Ki 32 nM) but their affinities toward CA I and CA II were
more than 10-folds lower (Ki 451 nM). In addition, these nanoparticles possessed a greater
affinity toward CA IX than acetazolamide and may be suitable candidates for imaging and
treatment of hypoxic tumors (Stiti et al., 2008). Recently, gold nanoparticles were used to
target CA IX for photoacoustic imaging and optical hyperthermia (Supuran & Winum,
2015). In addition, derivatives of benzenesulfonamides combined with nanorods showed
a significant impact on the reduction of the extracellular acidification in hypoxic human
mammary and colorectal carcinomas (Ratto et al., 2015). These studies suggest that the
use of nanoparticles can be used to efficiently target extracellular part of CA IX in hypoxic
tumors.

To improve the potency and selectivity of novel inhibitors, recently multivalent
nanoconstructs have been developed (Touisni et al., 2015; Kanfar et al., 2015). These
nanoconstructs showed excellent inhibitory effects with Ki values of 6.2–0.67 nM against
tested CA isozymes. They contain multiple copies of a ligand, which are displayed closely
on the same derivative. Thus, a weak mM binder can be changed to nM binder and the
biomolecular recognition can be enhanced (Kanfar et al., 2017). Even though the use of
multivalent nanoconstructs in the field of CA IX inhibition is quite recent, there is a great
potential to develop CA IX inhibitors with high affinity and selectivity properties using this
multivalent strategy.

IMAGING METHODS
Detection of hypoxic regions of solid tumors is an important step for cancer treatment
(Bertout, Patel & Simon, 2008). The application of selective ligands against CA IX in
diagnostic imaging has been widely investigated. They could help to decide which
patients can benefit from the adjunctive therapy (Höckel et al., 1996). Both antibodies and

Kazokaitė et al. (2017), PeerJ, DOI 10.7717/peerj.4068 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.4068


small molecular weight compounds have been used for non-invasive imaging of CA IX in a
number of aggressive and late stage types of tumors andmetastases (McDonald et al., 2012).

Imaging of tumors using CA IX-specific mAbs
CA IX is a useful biomarker for clear cell renal cell carcinoma (ccRCC) because CA
IX is absent in normal kidney tissues. The CA IX-specific cG250, radiolabeled with
iodine-124 or zirconium-89, has been used for the diagnosis of ccRCC (Stillebroer et al.,
2007). High parameters of sensitivity and specificity were determined by positron emission
tomography/computed tomography (PET/CT) when cG250 labeled with iodine-124 was
applied for the imaging of ccRCC (Divgi et al., 2007). This study suggests a great potential
to monitor ccRCC in patients and allows the differentiation of ccRCC versus non-ccRCC.

An iodine-125 radiolabelled M75, CA IX-selective mAb, has been developed for pre-
clinical imaging of CA IX in hypoxic tumors in mouse xenograft models (Chrastina,
Pastoreková & Pastorek, 2003; Chrastina et al., 2003). In addition, human A3 and CC7
mini-antibodies have been designed. Their small size enables them to distribute faster
compared to full sized antibodies. These antibodies do not inhibit the catalytic activity
of CA IX and are selective for the extracellular domain of human CA IX (Ahlskog et al.,
2009b). By using mAbs coated with near-infrared fluorescent (NIRF) molecules, molecular
imaging probes have been developed and applied for the non-invasive detection of breast
cancer axillary lymph node (ALN) metastases. The high selectivity of these probes have
been confirmed in vitro and in vivo using models of preclinical breast cancer metastasis
(Tafreshi et al., 2012).

Affibody molecules for imaging of CA IX expression
The affibodies are specially engineered small proteins that can bind to target proteins
with a high affinity similarly to mAbs. These molecules can be used as novel anticancer
drugs and/or for radionuclide imaging of tumors. In a recent study, several in vitro and
in vivo properties of affibodies labeled with 99mTc and 125I were characterized. Tested
affibodies were highly specific to CA IX in SK-RC-52 cells and selectively accumulated
in SK-RC-52 xenografts (Garousi et al., 2016). The study suggests the usefulness of CA
IX-binding affibodies for cancer detection and therapy.

Imaging of CA IX expression with small molecular chemical probes
Chemical probes can be applied for labeling and detection of biomolecules in order
to study molecular processes occurring within living cells. The sulfonamide-based CA
inhibitors efficiently bind to CA IX in hypoxic tumors as the active site of the enzymes
is only available upon hypoxic conditions (Svastová et al., 2004). Unlike CA IX-specific
mAbs, sulfonamides can recognize cells that are in hypoxic conditions. Thus, CA IX
inhibitors and mAbs can give the different information about imaging and prognosis
(Pastorekova, Ratcliffe & Pastorek, 2008). To prevent the sulfonamide-based inhibitors
from passing through the membrane, inhibitors can be conjugated with fluorescent dye
(FITC), albumin or hydrophilic sugar moieties that would prevent their entry into the
cell (Li et al., 2009b). Among them, sulfonamides attached to FITC were shown to be
membrane-impermeable with a high affinity to CA IX. This imaging agent was able to bind
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to CA IX, expressed in cells under hypoxic but not normoxic conditions (Svastová et al.,
2004). Similarly, acetazolamide-based derivatives bearing many types of NIRF dyes were
designed as promising probes for the imaging of hypoxia-induced CA IX in tumor cells.
Compounds were characterized to be up to 50-fold selective to CA IX compared to CA
II. In preclinical studies using mice with HT-29 tumors, the significant impact of CA IX
inhibitors with NIRF group on the non-invasive quantification of CA IX was determined
(Groves et al., 2012). Moreover, fluorescent sulfonamides containing a charged fluorophore
have been used in vivo and have shown a great efficiency in detecting CA IX in HT-29 and
SK-RC-52 tumor xenografts (Cecchi et al., 2005; Ahlskog et al., 2009a).

Imaging hypoxic tumor areas with nonpeptidic ligand conjugates
Recently, nonpeptidic ligand conjugates have been evaluated for single-photon emission
computed tomography (SPECT) imaging of hypoxic cancers that express CA IX (Lv, Putt
& Low, 2016). For a better clinical care, a broader knowledge about the level of hypoxia
is needed. CA IX-targeting ligand was synthesized with the aim to deliver the attached
99mTc-chelating agent to hypoxic regions. The studies of binding characterization in vitro
and imaging of the biodistribution in vivowere carried out. Results showed that several such
conjugates can selectively bind to CA IX in tumors. This study revealed the significantly
important applications of nonpeptidic ligand conjugates to evaluate the level of hypoxia in
tumors (Lv, Putt & Low, 2016).

In summary, themAbsG250 andM75 have the advantages of binding toCA IX selectively
on the surface of cancer cells, and thus they are able to detect cancer cells that overexpress
CA IX. This is because the mAbs are raised against specific epitopes of CA IX, and they are
unable to pass through the cell membranes due to the high molecular weight. However,
the mAbs (G250 and M75) bind to the PG domain, and therefore they cannot affect its
catalytic activity. In contrast, chemical inhibitors recognize the active site and can inhibit
the enzymatic activity of CA IX, but they might possess several disadvantages including
the low selectivity because of similarity of the α-CAs active sites, and the permeation
through the plasma membrane. Thus, they might have off-target effects because of affinity
to both intracellular and extracellular CAs. If the chemical inhibitors are conjugated with
bulky molecules to avoid the internalization, they may still bind to other membrane CAs,
such as CA XII. Thus, the properties of mAbs and chemical inhibitors need to be taken
into consideration for using them as anticancer agents or as probes for the imaging of
solid tumors.

CONCLUSION
The critical role of CA IX in the tumor progression and aggressiveness has been shown
and CA IX has been proposed as a promising therapeutic drug target and a clinically
useful biomarker of the broad range of hypoxic tumors. Our review described efforts in
the development of selective agents against CA IX. It is a challenging task to develop a
compound of high affinity and selectivity towards only one CA isoform due to the high
homology between twelve catalytically active CA isoforms in human body. Deeper insight in
the structural analysis and interactions of proteins involved in pH regulatory mechanisms
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of tumor cell could provide the relevant new strategies for rational drug design of CA
IX-selective compounds for the therapy and diagnostic imaging.

List of abbreviations

ADCs Antibody-drug conjugates
ALN Axillary lymph node
EZA Ethoxzolamide
IC50 The concentration causing 50% inhibition of target activity
CA Carbonic anhydrase
ccRCC Clear cell renal cell carcinoma
FITC Fluorescent dye
FTSA Fluorescent thermal shift assay
HIF Hypoxia-inducible factor
ITC Isothermal titration calorimetry
mAbs Monoclonal antibodies
NIRF Near-infrared fluorescent
PET/CT Positron emission tomography/computed tomography
SFA Stopped-flow CO2 hydration assay
SLC SignalChem Lifesciences Corp
SMDCs Small molecule-drug conjugates
SPECT Single-photon emission computed tomography
SPR Surface plasmon resonance
U-104 Ureidosulfonamide inhibitor of CA IX
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Kazlauskas E, Manakova E, Gražulis S, Ladbury JE, Matulis D. 2014. Discovery
and characterization of novel selective inhibitors of carbonic anhydrase IX. Journal
of Medicinal Chemistry 57:9435–9446 DOI 10.1021/jm501003k.
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2016. Intrinsic thermodynamics of inhibitor binding to human carbonic anhy-
drase IX. Biochimica et Biophysica Acta (BBA)—General Subjects 1860:708–718
DOI 10.1016/j.bbagen.2016.01.007.

LoM-C, Aulabaugh A, Jin G, Cowling R, Bard J, MalamasM, Ellestad G. 2004.
Evaluation of fluorescence-based thermal shift assays for hit identification in drug
discovery. Analytical Biochemistry 332:153–159 DOI 10.1016/j.ab.2004.04.031.

Lock FE, McDonald PC, Lou Y, Serrano I, Chafe SC, Ostlund C, Aparicio S, Winum
J-Y, Supuran CT, Dedhar S. 2013. Targeting carbonic anhydrase IX depletes
breast cancer stem cells within the hypoxic niche. Oncogene 32:5210–5219
DOI 10.1038/onc.2012.550.

Logsdon DP, GrimardM, LuoM, Shahda S, Jiang Y, Tong Y, Yu Z, Zyromski N,
Schipani E, Carta F, Supuran CT, Korc M, IvanM, Kelley MR, Fishel ML. 2016.
Regulation of HIF1α under hypoxia by APE1/Ref-1 impacts CA9 expression:
dual targeting in patient-derived 3D pancreatic cancer models.Molecular Cancer
Therapeutics 15:2722–2732 DOI 10.1158/1535-7163.MCT-16-0253.

Lomelino C, McKenna R. 2016. Carbonic anhydrase inhibitors: a review on the progress
of patent literature (2011–2016). Expert Opinion on Therapeutic Patents 26:947–956
DOI 10.1080/13543776.2016.1203904.

Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, Auf dem
Keller U, Leung S, Huntsman D, Clarke B, Sutherland BW,Waterhouse D, Bally
M, Roskelley C, Overall CM,Minchinton A, Pacchiano F, Carta F, Scozzafava A,
Touisni N,Winum J-Y, Supuran CT, Dedhar S. 2011. Targeting tumor hypoxia:
suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX
inhibitors. Cancer Research 71:3364–3376 DOI 10.1158/0008-5472.CAN-10-4261.

Lv P-C, Putt KS, Low PS. 2016. Evaluation of nonpeptidic ligand conjugates for SPECT
imaging of hypoxic and carbonic anhydrase IX-expressing cancers. Bioconjugate
Chemistry 27:1762–1769 DOI 10.1021/acs.bioconjchem.6b00271.

MacRae CA, Peterson RT. 2015. Zebrafish as tools for drug discovery. Nature Reviews
Drug Discovery 14:721–731 DOI 10.1038/nrd4627.

Mazzio EA, Smith B, Soliman KFA. 2010. Evaluation of endogenous acidic metabolic
products associated with carbohydrate metabolism in tumor cells. Cell Biology and
Toxicology 26:177–188 DOI 10.1007/s10565-009-9138-6.

McDonald PC,Winum J-Y, Supuran CT, Dedhar S. 2010. Recent developments in
targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 1:84–97
DOI 10.18632/oncotarget.112.

McDonald PC,Winum J-Y, Supuran CT, Dedhar S. 2012. Recent developments in
targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3:84–97
DOI 10.18632/oncotarget.422.

Métayer B, Martin-Mingot A, Vullo D, Supuran CT, Thibaudeau S. 2013. Superacid
synthesized tertiary benzenesulfonamides and benzofuzed sultams act as selective
hCA IX inhibitors: toward understanding a new mode of inhibition by tertiary
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