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Abstract Much effort is currently devoted to developing
patient-specific cancer therapy based on molecular character-
ization of tumors. In particular, this approach seeks to identify
driver mutations that can be blocked through small molecular
inhibitors. However, this approach is limited by extensive
intratumoral genetic heterogeneity, and, not surprisingly, even
dramatic initial responses are typically of limited duration as
resistant tumor clones rapidly emerge and proliferate. We
propose an alternative approach based on observations that
while tumor evolution produces genetic divergence, it is also
associated with striking phenotypic convergence that loosely
correspond to the well-known cancer “hallmarks”. These con-
vergent properties can be described as driver phenotypes and
may be more consistently and robustly expressed than genetic
targets. To this purpose, it is necessary to identify strategies
that are critical for cancer progression and metastases, and it is
likely that these driver phenotypes will be closely related to
cancer “hallmarks”. It appears that an antiacidic approach, by
targetting a driver phenotype in tumors, may be thought as a
future strategy against tumors in either preventing the occur-
rence of cancer or treating tumor patients with multiple aims,
including the improvement of efficacy of existing therapies,

possibly reducing their systemic side effects, and controlling
tumor growth, progression, and metastasis. This may be
achieved with existing molecules such as proton pump inhib-
itors (PPIs) and buffers such as sodium bicarbonate, citrate, or
TRIS.
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Abbreviations
GLUT-1 Glucose transporter-1
CA Carbonic anhydrase
NHE Sodium hydrogen exchanger
pHe Extracellular pH
pHi Cytoplasmic pH
V-ATPase Vacuolar-type ATPase
MCT Monocarboxylate transporter
PPIs Proton pump inhibitors
CHC α-cyano-4-hydroxycinnamate
DIDS 4,4′-di-isothiocyanostilbene-2,2′-disulfonate
DBDS 4,4′-dibenzamidostilbene-2,2′-disulfonate
AO Acridine orange
DDSs Drug delivery systems

1 Introduction

1.1 The physical microenvironment in tumors

All phases of the development and growth of tumors and their
responses to therapies are critically influenced by the tumor
physical microenvironment. Here, physical microenviron-
ment refers to key substrate and metabolites (oxygen, glucose,
and pH) as well as growth and regulatory factors which are
typically transported to and from tissue primarily by the
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vascular system. The structure and function of the vasculature,
therefore, strongly influence the physical microenvironment,
and in cancers, there is marked spatial and temporal variation
in blood flow [1]. In part, this is due to failure of the blood
vessel formation (angiogenesis), and in part, it reflects chaotic
blood flow due to failure of maturation in intratumoral blood
vessels. In turn, this creates regional and temporal variations
in environmental conditions with complex gradients of glu-
cose, oxygen, H+, and other substrates and metabolites
(Fig. 1). Tumor cell density is typically dependent on envi-
ronmental conditions so that regions of almost total cell death
(necrosis) are often visualized in tumors (Fig. 2).

Thus, tumor cells must adapt to a wide range of environ-
ments within tumors, and this is undoubtedly an important
factor in the observed intratumoral molecular heterogeneity.
However, cancer cells also play an active role in determining
their environment, an evolutionary strategy termed “niche
engineering” [2] (beaver dams being an obvious analogy in
nature). Tumor cells often release increased levels of growth
factors, which diffuse through the extracellular environment
and cause characteristic changes in vascular growth.

Of importance here, cancer cells also commonly alter their
environments through the use of anaerobic glucose metabo-
lism [3] (i.e., glucose metabolism to lactic acid) even in the
presence of normal oxygen concentrations. This has two
specific consequences: (1) increased glucose flux to compen-
sate for decreased efficiency in converting glucose to ATP;
and (2) increased production of H+ ions, which must be
extruded into the environment. As a result, cancers often
maintain an acidic microenvironment even when vascular
density and flow is relatively normal.

It is clear that cancers must be viewed not as a mass of
cancer cells but as a complex society containing interacting
populations of cancer and normal cells. Multiple studies have

now demonstrated that improved understanding of these in-
teractions can improve strategies for cancer prevention and
treatment [4–7].

Although many examples of such interactions can be cited,
here we focus on the role of extracellular pH as a mechanism by
which the environment affects the cancer cells and vice versa.
We particularly focus on potential therapeutic strategies that
perturb these dynamics and alter tumor development and growth.

In this review, we will emphasize two major issues: (1) the
role of tumor associated microenvironmental acidosis in
governing tumor growth, invasion, and metastases; and (2)
the role of acidosis in altering tumor response to therapy and
potential treatment strategies targeting intratumoral acidosis.

1.2 Aerobic glycolysis (the Warburg effect)

It is impossible to discuss the role of pH in cancer without first
introducing Warburg’s nearly century old observations [3].
Briefly, mammalian cells can efficiently generate energy from
glucose using oxygen to form CO2 and H2O, generating about
36 moles of ATP/mole of glucose. The alternative glycolytic
metabolic pathway does not require oxygen so that each glu-
cose molecule is converted to two molecules of lactate gener-
ating only two molecules of ATP. In 1867, Pasteur demonstrat-
ed that yeast decreases ethanol production following “aeration”
of the culture media. This observation led to an enduring
paradigm that in the absence of pathology, cells optimize the
efficiency of ATP production within environmental constraints.
Thus, high efficiency oxidative phosphorylation (up to 36 ATP/
glucose) is generally assumed to be the default source of ATP
under physiological conditions, whereas the Embden-
Meyerhoff fermentative (glycolytic) pathway, glycolysis (two
ATP/glucose), is the “emergency backup” to be used only when
oxygen is deficient. Warburg first noted that transformed cells
are an exception to these principles. That is, cancer cells fre-
quently exhibit high rates of lactate production even in the
presence of oxygen (aerobic glycolysis).

The Warburg effect was originally ascribed to a failure of
oxidative metabolism [8], but mitochondrial dysfunction is
observed in only a small subset of cancers [9, 10]. Alternatively,
it has been suggested that the Warburg effect, through its
production of lactate, provides necessary carbon substrate for
biosynthesis of macromolecules [11, 12]. However, experimen-
tal observations have demonstrated that only a very small
percentage of lactate molecules produced by aerobic glycolysis
(<7 %) is retained in the cancer cell and glutamine serves as the
major carbon source [13]. Furthermore, aerobic glycolysis is
commonly observed in normal, proliferating, and non-
proliferating cells [9, 14–16]. Thus, although Warburg first
observed of aerobic glycolysis over 70 years ago, its biological
basis in cancer and normal cells remains unclear [15].

Fig. 1 Spatial variations in glucose, oxygen, and H+ concentrations
around a single intratumoral blood vessel
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For decades, the Warburg effect, although well recognized,
was largely relegated to a laboratory curiosity. However,
interest in aerobic glycolysis has significantly expanded with
the advent of widespread application of FdG-PET imaging. It
is now clear that the vast majority of clinical cancers exhibit
increased glucose uptake and, as a consequence of increased
aerobic glycolysis, are significantly more acidic than normal
tissue [15]. Many investigations of the molecular mechanism
of the Warburg effect have provided insights into how aerobic
glycolysis emerges in cancer cell. Less clear is the question of
why it develops. That is, in the conventional model of carci-
nogenesis as an evolutionary process, it is initially difficult to
understand the Darwinian dynamics leading to consistent
selection for aerobic glycolysis which is less energetically
efficient than oxidative phosphorylation and produces large
amounts of acid. The latter requires energy to be exported
from the cell and results in a potentially toxic acidic microen-
vironment since most mammalian cells cannot survive
prolonged exposure to an extracellular pH lower than 7.2.

We and others [4, 16–18] have addressed this evolutionary
conundrum with the fundamental assumption that due to the
Darwinian dynamics that govern somatic evolution, every com-
mon phenotype observed in cancer populations must confer an
adaptive advantage. With insights provided by mathematical
models, we have proposed that the Warburg effect increases the
fitness of cancer cells through a number of mechanisms. One
such mechanism involves potential advantages of acid produc-
tion. In general, we propose that aerobic glycolysis represents an
evolutionary strategy described as “niche engineering” in which
a population generates environmental properties that decrease the
fitness of its competitors. That is, the cancer cells having evolved
adaptive strategies to evade acid-mediated toxicity, create an
acidic environment that reduces the fitness of other normal and
tumor populations (Fig. 3). Furthermore, we have previously
demonstrated that regional acidosis can promote invasion
through breakdown of extracellular matrix and can inhibit im-
mune response to tumor antigens.

2 Acidosis in carcinogenesis and cancer prevention

Here, we focus largely on Warburg physiology and its
resulting acidosis in clinical cancers and their therapy.
Less well-investigated are the evolutionary dynamics that
select for aerobic glycolysis during carcinogenesis. Tran-
sition from normal tissue to invasive cancer is a multi-
step process in which increasingly malignant cellular
populations emerge over time generally coincident with
accumulating genomic mutations. This is often described
as “somatic evolution” because it appears formally anal-
ogous to Darwinian evolution in nature [19–22]. While
this conceptual model is well accepted, the interactions
with phenotypic properties and environmental selection
forces that determine individual fitness remain ill-defined
[18]. Both observational and computational analyses of
intraductal carcinogenesis have found evidence for both
hypoxia and acidosis. This is largely due to regional
environmental variations in intraductal tumor caused by
separation from blood vessels which remain in the ductal
stroma separated from the tumor cells by the intact
basement membrane [3, 23–25]. This is supported by
expression of the hypoxia-induced glucose transporter,
GLUT-1, and carbonic anhydrase isoform 9, CA-IX,
adjacent to necrotic zones in DCIS as well as the upreg-
ulation of GLUT-1 and sodium hydrogen exchanger
(NHE-1, a marker for extracellular acidosis) in regions
of microinvasion [26]. Notably, adaptation to hypoxia
and acidosis has been shown to be critical for the tran-
sition from in situ to invasive tumor in human cervical
cancer [4].

Computer simulations [25] have demonstrated that changes
in microenvironmental pH can slow the rate of evolution in in
situ cancers. This was supported by a recent study showing
that sodium bicarbonate added to drinking water in TRAMP
mice dramatically delayed the transition from in situ to inva-
sive prostate cancer [5].

Fig. 2 Computerized
tomography scan from a lung
cancer demonstrates intratumoral
regions of necrosis (left panel).
Image analysis (right panel)
demonstrates corresponding
variations in blood flow
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3 Role of tumor acidity in drug resistance

Microenvironmental acidity plays an important role in the
response of malignant tumors to a wide variety of drugs and
is likely a leading cause of chemotherapeutic failure in cancer
treatment. A key factor in this resistance is the “reversed pH”
gradient. That is, cancer cells are characterized by both an acidic
extracellular pH (pHe) and a normal or alkaline cytoplasmic pH
(pHi) [27, 28]. The alkaline pHi appears to confer resistance to
both the hostile acidic milieu and drug cytotoxicity [29–33]. A
number of studies have demonstrated that resistance to cisplatin
and doxorubicin is associated with an elevation of pHi in
multiple tumor cell lines (human epidermoid cancer, human
prostate cancer, human ovarian cancer, and myeloma, a series
of human lung and breast cancer cell lines) [33–37]. Similarly,
cancer cell lines that are evolved to become drug resistant have
a more alkaline pHi and a more acidic pH in subcellular organs
when compared to the wild-type drug sensitive cells (HL60,
K562, CEM, and MCF7) [38]. Many human spontaneous
tumors have similar reversed gradients suggesting a clinical
relevance for these studies [39]. While there are many potential
mechanisms of resistance, it is clear that reversed pHe/pHi
gradient interferes with the passage of drugs across the lipid
bilayer of cells. Many anticancer drugs (such as doxorubicin
and mitoxantrone) are weak bases which are neutralized and
inactivated by protonation in the acidic microenvironment sur-
rounding the cells or sequestered in intracellular acidic vesicles
or endosomes [40–42]. An additional pH-dependent mecha-
nism of drug resistance, recently described for cisplatin, in-
cludes both extracellular sequestration and exosomes mediated
elimination of the drug frommelanoma cells [43]. Interestingly,
other studies have shown that an acidic pH increases the tumor
cell exosomes release as well [44].

3.1 Strategies of tumor cells to survive in an acidic
environment

As noted above, cancer cells may use acid as a form of niche
engineering in which they actively build an environment that
is favorable for their own growth and survival but toxic to
competitors and potential predators (such as the immune
system). This appears to represent an evolutionary strategy
termed “spite” in which an individual evolves a strategy that
decreases its own fitness but with the benefit (in this case an
acidic environment) that reduces the fitness of other normal
and tumor populations and, thus, promotes growth and inva-
sion. A key component of this putative evolutionary sequence
is acquisition of adaptive strategies to evade acid-mediated
toxicity [45]. These strategies include a series of proton export
mechanisms, which are found both in the lipid bilayer of the
external cell membrane and in intracellular compartmental
membranes, including vacuolar type ATPase (V-ATPase)
and the proton transporters NHE-1, monocarboxylate

Fig. 3 Acid-mediated tumor invasion. Increased glycolysis by cancer
cells produces and acidic microenvironment. H+ flows along concentra-
tion gradients into adjacent normal tissue causing a normal cell death
(top), b extracellular matrix degradation, and c angiogenesis. All of these
responses promote tumor growth and invasion
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transporters (MCTs), CAs (mainly CA-IX), adenosine triphos-
phate synthase, Na(+)/HCO3(−) co-transporter, and the Cl(−)/
HCO3(−) exchanger. These proton pumps are known to be
overexpressed and/or overactivated in cancer cells when com-
pared with their non-transformed counterparts. The availabil-
ity of several inhibitors specific for these proton extrusion
mechanisms has allowed investigation of their role in the
maintenance of the reversed proton gradient and consequently
in the acquisition of the malignant phenotype.

V-ATPase is an enzyme composed of multiple subunits,
ubiquitously present in the membranes of vacuolar systems of
animal cells. It is critical in vacuole acidification, thus, playing
a crucial role in receptor-mediated endocytosis, intracellular
trafficking of late endosomes, the transport of lysosomal en-
zymes from the Golgi apparatus to lysosomes, and the crea-
tion of the microenvironment necessary for proper protein
transport, exchange, and secretion [46, 47]. V-ATPases can
also be expressed in the plasma membrane of cancer cells
[48–59] probably due to their enhanced exocytotic events and
membrane-recycling mechanisms. Messenger RNAs and/or
protein expression levels of different V-ATPase subunits have
been shown to be increased in several cancer tissues and cell
lines (human hepatocellular carcinoma, breast tumors and
melanomas, esophageal squamous cancer cells, oral squa-
mous cell carcinoma, human pancreatic carcinoma, and non-
small cell lung cancer) compared with normal tissues [48, 51,
55, 60–64]. Moreover, the intensity of V-ATPase expression
has been reported to associate to the pathological type and
grade, both in non-small cell lung cancer and in pancreatic
carcinoma [48, 55]. V-ATPase overexpression and its locali-
zation to the plasma membrane have been associated with the
malignant phenotype in terms of invasiveness and metastatic
potential and drug resistance [35, 48–50, 61, 62]. Recently, the
increased expression of subunit of V-ATPases on the mem-
brane of human melanoma cells deriving from metastatic
lesions has been clearly shown [65] suggesting a role in cancer
progression and in the metastatic cascade. These data may
provide a new marker of tumor malignancy.

The membrane-bound NHEs represent another class of pro-
teins that can extrude protons in exchange for a cation to
maintain intracellular electroneutrality. They are present at the
surface ofmost cells where they have a central role in regulating
cellular volume and pH homeostasis. NHE isoform 1 (NHE-1)
is the most common isoform of the NHEs family, and it is
ubiquitous in all mammalian cells. In normal cells, NHE-1
activity is allosterically increased with decreasing pHi, resulting
in rapid activation and subsequent elevation of pHi as a conse-
quence of increased proton extrusion [66]. An aberrantly ele-
vated NHE-1 activity has been correlated in tumors with pHe/
pHi gradient reversal and in turn, associated with tumor origin,
local growth, and further progression of the metastatic process
[67, 68]. Molecular mechanisms underlying this tumor associ-
ated NHE-1 constitutive activation are only recently becoming

evident. NHE-1 regulation occurs through the phosphorylation
of key amino acids in the cytosolic domain as well as by its
interaction with other intracellular proteins and lipids. Ultimate-
ly, NHE-1 regulators alter transport activity by altering its
affinity for intracellular H+ such that it is more active at a more
alkaline pHi [69]. In breast cancer cells, NHE-1 is highly
expressed in invadopodia, invasive protrusions capable of pro-
teolytic degradation of the extracellular matrix, where they play
an essential role in creating the acidic extracellular microenvi-
ronment that facilitates proteases activity [70, 71]. As yet, large
clinical studies examining NHE-1 expression in human tumors
are lacking. However, recently NHE genes expression was
found to be strongly upregulated in several lung cancer
histotypes [60]. Interestingly, the expression change patterns
have been reported to be highly complementary between NHE
genes and the V-ATPase genes in different cancer types, sug-
gesting that the NHE antiporters may play a complementary
role to that of the V-ATPases [60].

Monocarboxylate transporters (MCTs) are proton
symporters that transport monocarboxylates such as L-lactate,
pyruvate, and the ketone bodies across the plasma membrane.
There are four isoforms, MCTs 1–4, which are known to
perform this function in mammals, each with distinct substrate
and inhibitor affinities. MCTs play essential metabolic roles in
most tissues, with their distinct properties, expression profile,
and subcellular localization matching the particular metabolic
needs of a tissue. They also play a key role in maintaining the
pH homeostasis [72]. MCT1, MCT2, and MCT4 genes have
been shown to be upregulated in several cancer histotypes
(breast, colon, lung, ovary) with a considerable variation in the
MCT isoforms expressed in different tumors [73, 74]. MCT1,
MCT4, and their chaperone CD147 are overexpressed in the
plasma membrane of glioblastomas compared with diffuse
astrocytomas and non-neoplastic brain [75]. MCT1 and
MCT4 both have elevated activity in human melanoma cells
in response to low extracellular pH [76]. MCT1 has been
reported to be upregulated in neuroblastoma cells, and elevat-
ed MCT1 mRNA levels have been detected in fresh neuro-
blastoma biopsy samples, with a positive correlation between
expression level and risk of fatal outcome [77]. Xu et al. [60]
recently reported MCT genes to be upregulated in breast,
colon, liver, and two lung (adenocarcinoma, squamous cell
carcinoma) cancers, but not in prostate cancer. Interestingly,
lactate released as a waste product of glycolytic energy pro-
duction in hypoxic tumor microenvironment has been dem-
onstrated to constitute a prominent substrate that fuels the
oxidative metabolism of tumor cells in oxygenated regions,
andMCT1 has been shown to be involved in lactate uptake by
a human cervix squamous carcinoma cell line that preferen-
tially utilized lactate for oxidative metabolism [78].

Carbonic anhydrases (CA) and HCO3− transporters have
also been found to play a role in neutralizing the protons in
cancer cells. The membrane-bound CAs catalyze the otherwise
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slow reaction from CO2+ H2O to H2CO3, which dissociates
into HCO3

− (bicarbonate) and H+ in an acidic extracellular
environment. The HCO3

− is then transported across the mem-
brane through an HCO3

− transporter into the intracellular envi-
ronment, where it reacts with a H+ to form CO2 and H2O; the
CO2 is freely membrane-permeable and diffuses out of the cell,
forming a cycle for removing excess H+ [79, 80]. CA isoform 9
is known to be inducible by hypoxia [81] and, unlikemost other
CA isoforms, is associated with many tumors [82, 83]. Very
few normal tissues, with the exception of stomach [84], express
significant levels of CA9 so that positive staining for CA9 is
considered an established marker of tumor hypoxia and a
clinical indicator of aggressive cancers (for example, breast
and bone) with poor prognosis [85–87]. In addition to CA9,
CA12 and CA14 genes have been recently reported to show
upregulation in breast, colon, liver, and two lung (adenocarci-
noma, squamous cell carcinoma) cancers (but not in prostate
cancer), with two HCO3

− transporters, NBC2 (SLC4A5) and
NBC3 (SLC4A7), also being upregulated in colon, liver, and
two lung cancers types analyzed [60].

3.2 Summary

Normal function of mammalian cells requires robust mecha-
nism to regulate their pHi [88], by sensing changes and then
rapidly responding by moving acids and/or bases across the
plasma membrane. Cytosolic pH is extraordinarily important,
affecting the ionization state of all intracellular weak acids and
weak bases, a large number of cellular macromolecules in-
cluding all proteins. Small perturbation in intracellular pH
may potentially affect a wide array of biological processes.
In the pathological process of cancer development, the acidi-
fication of tumor microenvironment represents an evolution-
ary advantage both for invasion and proliferation and for
response to many chemotherapeutic treatments. Thus, upreg-
ulation of proton pumps is necessary to generate the slightly
alkaline pHi and markedly acidic pHe, which are essential for
cancer biology and response to treatment. As our understand-
ing of these mechanisms increases so do opportunities for new
cancer specific therapeutic targets.

4 Proton exchangers as a therapeutic target

The reversal of pH gradient in cancer cells is increasingly
considered as a hallmark of virtually all cancers [89–91]. And,
thus, proton extrusionmechanisms represent appealing targets
for new and less toxic anticancer treatment strategies [92].
Indeed, several studies have shown that targeting membrane
proton pumps can cause cancer cell death, inhibit proliferation,
reduce invasiveness and metastasis formation, and restore
sensitivity of drug-resistant cancer cells to chemotherapeutics.

V-ATPases inhibitors Many studies have shown a key role of
V-ATPases in drug resistance, cancer cells invasiveness, and
in their capacity to migrate. Thus, there is much interest in the
potential role of anti V-ATPases inhibitors as anticancer drugs,
both as monotherapy and in combination with different che-
motherapeutics [93, 94]. A growing number of V-ATPases
inhibitors are reported to be effective against several cancer
hystotypes. The first V-ATPase inhibitors to be discovered
were bafilomycin and concanamycin [95]. However, these
drugs and their subsequent derivatives have proven too toxic
to be used as antitumor drugs.More recently, other V-ATPases
inhibitors belonging to the benzolactone enamide class, such
as salicylihalamide, lobatamides, and oximidines, have been
described. With the achievement of total syntheses of
salicylihalamide, lobatamide, and related compounds, the
elaboration of congeners with specificity for particular en-
zyme isoforms may provide drug candidates that are less toxic
[96, 97]. Limited supplies have so far precluded extensive
in vivo testing of the benzolactone enamides.

An alternative approach for inhibiting the V-ATPase is
silencing the expression of selected subunits using small in-
terfering RNAs (siRNA) [54, 57, 98–100]. Isoform specific
siRNAs employed to selectively target mRNAs isoforms pref-
erentially expressed on cancer cells [54] might result in a less
toxic cancer therapy.

Proton pump inhibitors Among several anti-V-ATPases ap-
proaches, the most promising results have been obtained
with PPIs, a class of potent antiacidic drugs (Table 1),
designed for treatment of peptic diseases. These drugs have
been used by billions of people worldwide in the last
decades, without significant side effects, even at high dos-
ages (as in patients with Zollinger-Hellison syndrome).
Interestingly, the absence of toxicity for this class of drugs
is largely due to their dependence on an acidic pH for
activation [101]. Thus, unlike the vast majority of the drugs
including anticancer drugs, PPIs require an acidic environ-
ment for activation. As lipophilic and weakly basic
prodrugs, they easily penetrate cell membranes and concen-
trate in acidic compartments, where they are unstable and
are converted into sulfonamide forms which are the active
inhibitors [102] (Fig. 4).

Based on these properties, PPIs have been extensively
investigated for their potential to reduce tumor acidity and
overcome the acid related chemoresistance. Furthermore, PPIs
could have direct tumor cell toxicity by depriving them of a
key mechanism for maintaining pHi/pHe gradient. A number
of studies have now shown that PPIs can be useful in modu-
lating tumor acidification and restoring chemotherapeutic sen-
sitivity in drug-resistant cancer cells both in vitro and in vivo
[58, 103–106]. These preclinical data have been supported by
clinical studies in companion animals with spontaneous tu-
mors [107] and in patients with osteosarcoma [103].
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In addition, specific cytotoxic effects of PPIs on tumor cells
have been reported [52, 65, 106, 108–112]. As expected, the
PPI-induced cytotoxicity is strongly enhanced in low pH cul-
ture conditions [65]. PPIs’ activity has been investigated in
several human tumor histotypes, such as melanoma [58, 65,
109], B cell lymphomas [108], pancreatic cancer [106], gastric
carcinoma [104, 105, 110, 111], Ewing sarcoma [52], osteosar-
coma [103, 112], rhabdomyosarcoma, and chondrosarcoma
[112]. PPIs have also been shown to overcome the acidity-
induced tumor immune escape mechanisms [113–115]. Finally,
based onmeta-analysis of observational studies and multicenter
prospective cohort study, administration of PPIs in patients with
Barrett’s esophagus significantly reduces the risk of esophageal
adenocarcinoma and/or high grade dysplasia [116, 117].

NHE-1 inhibitors Inhibition of NHE-1 represents an additional
potential target in anticancer therapy. Indeed, NHE-1 inhibitors
have demonstrated efficacy in malignant glioma [118], hepato-
cellular carcinoma cells [119], and breast cancer cells [120].
Moreover, NHE-1 inhibition has been found to augment pacli-
taxel [91], imatinib [121], doxorubicin [122] and cisplatin [123]
sensitivity in cancer cells. Amiloride was the first NHE inhib-
itor developed and has been shown to have a direct antitumoral
and antimetastatic effect, in vitro and in vivo [124, 125].
Amiloride is a potassium-sparing diuretic, first approved in
1967 for management of hypertension and congestive heart
failure. In the subsequent 40 years, it has been shown to be
well tolerated and safe in humans. Cariporide is more recent but

well studied specific and powerful NHE-1 inhibitor, for which
an antitumor effect has been reported [68]. It has been shown to
be useful in overcoming drug resistance and inhibiting the
metastatic process [126]. Cariporide has undergone clinical
trials in a cardiological setting and for ischemic reperfusion
injury and is generally well tolerated. However, some side
effects mainly related to drug accumulation and cerebrovascu-
lar complications have been reported. Importantly, the potency
of cariporide and some other NHE-1 inhibitors are related to the
ionization state of the guanidine residues. Thus, the acidic
extracellular pH of tumors would be expected to augment the
efficacy of these drugs, a potential advantage in terms of dose
dependent side effects.

Carbonic anhydrases inhibitors CA9 is an attractive target for
anticancer therapy, because it is selectively expressed by tumor
cells and shows highly restricted expression in normal tissue.
Pharmacologic interference of CA9 catalytic activity using
monoclonal antibodies or CA9 specific small molecule inhibi-
tors has been shown recently to impair primary tumor growth
and metastasis. Among several classes of small molecules
known to effectively inhibit CAs, compounds based on
sulfonamide/sulfamates and coumarins, particularly
chemotypes of these compounds selective for extracellular
CAs such as CA9 [127, 128], have demonstrated a promise
as potential anticancer agents. Treatment of hypoxic, metastatic
4 T1 mouse breast tumors with a fluorescent sulfonamide CA9
inhibitor resulted in a significant inhibition of tumor growth

Table 1 Comparison of pharmacokinetics of proton pump inhibitors
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[129]. Furthermore, ureido sulfonamide [127] and glycosyl
coumarin [128] inhibitors of CA9 produced significant inhibi-
tion of primary tumor growth in human and mouse models of
orthotopic breast cancer. Treatment of HT-29 xenografts with
the high affinity inhibitor of CA9 indanesulfonamide reduced
tumor growth, and further regression was observed when the
inhibitor was used in combination with radiotherapy [130].
Recent data suggest that sulfonamide and coumarin inhibitors
of CA9 activity are also efficacious in reducing metastatic
burden in preclinical models. For example, ureido sulfonamides
significantly decrease lung metastases from breast cancer [127,

129], and similar results were achieved using glycosyl couma-
rins [128, 129].

MCTs inhibitors A number of inhibitors of MCTs have
been described such as α-cyano-4-hydroxycinnamate
(CHC) and its analogues, stilbene disulfonates including
4,4′-di-isothiocyanostilbene-2,2′-disulfonate (DIDS) and
4,4 ′-dibenzamidostilbene-2,2 ′-disulfonate (DBDS),
phloretin, and bioflavanoids such as quercetin [72,
131]. However, none of these is specific for MCTs.
CHC is a potent inhibitor of the mitochondrial pyruvate
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transporter [72], while DIDS and DBDS inhibit the
chloride/bicarbonate exchanger AE1 much more power-
fully than MCT1 [72, 131]. MCTs inhibition with CHC
has resulted in a decrease of tumor cell pHi in in vitro
melanoma and neuroblastoma models [76, 77]. Interest-
ingly, CHC activity increased when cultivating cells in
an acidic medium [76]. Inhibiting MCT1 with CHC or
siRNA induced a switch from lactate fueled respiration
to glycolysis in a human cervix squamous carcinoma cell
line that preferentially utilized lactate for oxidative me-
tabolism [78]. This last effect, together with a retarded
tumor growth, was also observed in vivo inhibiting
MCT1 in a mouse model of lung carcinoma and
xenotransplanted human colorectal adenocarcinoma cells
[78]. CHC has been reported to decrease glycolytic me-
tabolism, migration, and invasion and to induce cell
death in an in vitro glioblastoma model. A synergistic
effect when combining CHC with temozolomide has also
been reported in this model. The effectiveness of CHC in
glioma cells appeared to be dependent on MCT mem-
brane expression [75, 132]. Orthotopic application of the
same inhibitor in immunodeficient rats after intracranial
implantation of glioma cells has been shown to impair
glioma invasion and to induce tumor necrosis and in-
crease animal survival in an in vivo model.

5 Tumor acidity as a therapeutic target

In addition to proton extrusion mechanisms, cancer microen-
vironmental can be viewed as a potential target for anticancer
therapy and a number of potential strategies are available.

Acridine orange AO is known to accumulate densely in in-
tracellular vesicles, especially lysosomes, in an acidity depen-
dent manner. AO shows marked and prolonged accumulation
in cancer cells, since these contain many strongly acidic
lysosomes [133] and is, therefore, useful for visualizing tumor
cells during surgery through a fluorescent microscope. Fur-
thermore, it is used for photodynamic therapy, as it has a
strong cytocidal effect on tumor cells following excitation
through blue light or low dose radiation [134]. Kusazaki
et al. [134–136] have developed an innovative approach using
minimally invasive surgery combined with photo and
radiodynamic therapy with AO for treatment of musculoskel-
etal sarcomas. They report improved postoperative limb func-
tion when compared with conventional surgery with wide
tumor resection. Clinical pilot studies have yielded excellent
results, with low local recurrence rates, good prognosis, and
excellent limb function [136–139].

pH-Sensitive nanosystems for drug delivery in cancer ther-
apy have been reviewed recently [140]. A variety of

nanomaterials responding to physical, chemical, or biological
stimuli have been synthesized and investigated as drug deliv-
ery systems (DDSs). Among these, pH-sensitive systems have
been most widely used for drug delivery in cancer therapy.
According to their constituents, nanomaterials can be classi-
fied as organic, inorganic, or hybrid. One approach optimizes
intratumoral drug release using nanomaterials with “ioniz-
able” chemical groups, such as amines, phosphoric acids,
and carboxylic acids that undergo pH-dependent changes in
physical or chemical properties resulting in drug release. An
alternative approach uses acid-labile chemical bonds to cova-
lently attach drug molecules directly onto the surfaces of
existing nanocarriers or to construct new nanocarriers. These
acid-labile chemical bonds are stable at neutral pH but are
degraded or hydrolyzed in acidic media. Finally, a novel pH
responsive DDSs incorporates carbon dioxide generating pre-
cursors that produce CO2 gas in an acidic environment, lead-
ing to disintegration of the carrier and release of drug mole-
cules. This strategy is based on the fact that HCO3

− reacts with
acid to produce carbonic acid, which easily decomposes to
yield carbon dioxide (CO2) gas and water. Common CO2

generating agents include sodium bicarbonate and ammonium
bicarbonate, both of which are compatible with normal cellu-
lar systems and the tumor microenvironment. Several studies
have demonstrated that novel pH-sensitive drug delivery sys-
tems are capable of improving the efficiency of cancer treat-
ment. A number of these have been translated from bench to
clinical application and have been approved by the Food and
Drug Administration for cancer treatment [140].

6 Conclusion

Increased acid production is a consequence of increased an-
aerobic glucose metabolism in tumors that results from re-
gional hypoxia due to disordered vascular development and
the Warburg effect. The evolution of the latter during carcino-
genesis is likely favored by the benefits of increased acid
production which promotes invasion and proliferation of the
cancer cells at the expense of their competitors and blunts the
immune response. This “metabolic dysregulation” is now
viewed as a “hallmark” [141] of cancer and confers an addi-
tional benefit of promoting tumor cell adaptation to many
chemotherapies. However, this reversed acid gradient in can-
cers also provides an inviting target for new therapeutic strat-
egies that are being examined in multiple centers throughout
the world.
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