288 research outputs found

    Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX

    Get PDF
    Carbonic anhydrase IX (CAIX) plays an important role in the growth and survival of tumor cells. MORC2 is a member of the MORC protein family. The MORC proteins contain a CW-type zinc finger domain and are predicted to have the function of regulating transcription, but no MORC2 target genes have been identified. Here we performed a DNA microarray hybridization and found CAIX mRNA to be down-regulated 8-fold when MORC2 was overexpressed. This result was further confirmed by northern and western blot analysis. Our results also showed that the protected region 4 (PR4) was important for the repression function of MORC2. Moreover, MORC2 decreased the acetylation level of histone H3 at the CAIX promoter. Meanwhile, trichostatin A (TSA) had an increasing effect on CAIX promoter activity. Among the six HDACs tested, histone deacetylase 4 (HDAC4) had a much more prominent effect on CAIX repression. ChIP and ChIP Re-IP assays showed that MORC2 and HDAC4 were assembled on the same region of the CAIX promoter. Importantly, we further confirmed that both proteins are simultaneously present in the PR4-binding complex. These results may contribute to understanding the molecular mechanisms of CAIX regulation

    Hepatic artery aneurysm repair: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hepatic artery aneurysms remain a clinically significant entity. Their incidence continues to rise slowly and mortality from spontaneous rupture is high. Repair is recommended in those aneurysms greater than 2 cm in diameter. It is not surprising that vascular comorbidities, such as ischaemic heart disease, are common in surgical patients, particularly those with arterial aneurysms such as these. The decision of when to operate on patients who require urgent surgery despite having recently suffered an acute coronary syndrome remains somewhat of a grey and controversial area. We discuss the role of delayed surgery and postoperative followup of this vascular problem.</p> <p>Case presentation</p> <p>A 58-year-old man was admitted with a 5.5 cm hepatic artery aneurysm. The aneurysm was asymptomatic and was an incidental finding as a result of an abdominal computed tomography scan to investigate an episode of haemoptysis (Figure <figr fid="F1">1</figr>). Three weeks prior to admission, the patient had suffered a large inferior myocardial infarction and was treated by thrombolysis and primary coronary angioplasty. Angiographic assessment revealed a large aneurysm of the common hepatic artery involving the origins of the hepatic, gastroduodenal, left and right gastric arteries and the splenic artery (Figures <figr fid="F2">2</figr> and <figr fid="F3">3</figr>). Endovascular treatment was not considered feasible and immediate surgery was too high-risk in the early post-infarction period. Therefore, surgery was delayed for 3 months when aneurysm repair with reconstruction of the hepatic artery was successfully performed. Graft patency was confirmed with the aid of an abdominal arterial duplex. Plasma levels of conventional liver function enzymes and of alpha-glutathione-<it>S</it>-transferase were within normal limits. This was used to assess the extent of any hepatocellular damage perioperatively. The patient made a good recovery and was well at his routine outpatient check-ups.</p> <p>Conclusion</p> <p>There is no significant difference in cardiac risk in patients who have undergone vascular surgery within 6 months of a myocardial infarction compared with those who have had the operation in the 6 to12 month time frame. Use of alpha-glutathione-<it>S</it>-transferase gives an indication of the immediate state of hepatic function and should be used in addition to traditional liver function tests to monitor hepatic function postoperatively.</p

    Mitogen-activated protein/extracellular signal-regulated kinase kinase 1act/tubulin interaction is an important determinant of mitotic stability in cultured HT1080 human fibrosarcoma cells.

    Get PDF
    Activation of the mitogen-activated protein kinase (MAPK) pathway plays a major role in neoplastic cell transformation. Using a proteomics approach, we identified alpha tubulin and beta tubulin as proteins that interact with activated MAP/extracellular signal-regulated kinase kinase 1 (MEK1), a central MAPK regulatory kinase. Confocal analysis revealed spatiotemporal control of MEK1-tubulin colocalization that was most prominent in the mitotic spindle apparatus in variant HT1080 human fibrosarcoma cells. Peptide arrays identified the critical role of positively charged amino acids R108, R113, R160, and K157 on the surface of MEK1 for tubulin interaction. Overexpression of activated MEK1 caused defects in spindle arrangement, chromosome segregation, and ploidy. In contrast, chromosome polyploidy was reduced in the presence of an activated MEK1 mutant (R108A, R113A) that disrupted interactions with tubulin. Our findings indicate the importance of signaling by activated MEK1-tubulin in spindle organization and chromosomal instability

    Characterization of the human properdin gene

    Full text link

    Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4

    Get PDF
    Contains fulltext : 96097.pdf (postprint version ) (Open Access)BACKGROUND: The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. METHODS: 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. RESULTS: MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). CONCLUSIONS: Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences

    Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy.

    Get PDF
    PURPOSE: Bevacizumab, an anti-VEGFA antibody, inhibits the developing vasculature of tumors, but resistance is common. Antiangiogenic therapy induces hypoxia and we observed increased expression of hypoxia-regulated genes, including carbonic anhydrase IX (CAIX), in response to bevacizumab treatment in xenografts. CAIX expression correlates with poor prognosis in most tumor types and with worse outcome in bevacizumab-treated patients with metastatic colorectal cancer, malignant astrocytoma, and recurrent malignant glioma. EXPERIMENTAL DESIGN: We knocked down CAIX expression by short hairpin RNA in a colon cancer (HT29) and a glioblastoma (U87) cell line which have high hypoxic induction of CAIX and overexpressed CAIX in HCT116 cells which has low CAIX. We investigated the effect on growth rate in three-dimensional (3D) culture and in vivo, and examined the effect of CAIX knockdown in combination with bevacizumab. RESULTS: CAIX expression was associated with increased growth rate in spheroids and in vivo. Surprisingly, CAIX expression was associated with increased necrosis and apoptosis in vivo and in vitro. We found that acidity inhibits CAIX activity over the pH range found in tumors (pK = 6.84), and this may be the mechanism whereby excess acid self-limits the build-up of extracellular acid. Expression of another hypoxia inducible CA isoform, CAXII, was upregulated in 3D but not two-dimensional culture in response to CAIX knockdown. CAIX knockdown enhanced the effect of bevacizumab treatment, reducing tumor growth rate in vivo. CONCLUSION: This work provides evidence that inhibition of the hypoxic adaptation to antiangiogenic therapy enhances bevacizumab treatment and highlights the value of developing small molecules or antibodies which inhibit CAIX for combination therapy

    Bicarbonate Recycling by HIF‐1–Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells

    Full text link
    Intervertebral disc degeneration is a ubiquitous condition closely linked to chronic low‐back pain. The health of the avascular nucleus pulposus (NP) plays a crucial role in the development of this pathology. We tested the hypothesis that a network comprising HIF‐1α, carbonic anhydrase (CA) 9 and 12 isoforms, and sodium‐coupled bicarbonate cotransporters (NBCs) buffer intracellular pH through coordinated bicarbonate recycling. Contrary to the current understanding of NP cell metabolism, analysis of metabolic‐flux data from Seahorse XF analyzer showed that CO2 hydration contributes a significant source of extracellular proton production in NP cells, with a smaller input from glycolysis. Because enzymatic hydration of CO2 is catalyzed by plasma membrane‐associated CAs we measured their expression and function in NP tissue. NP cells robustly expressed isoforms CA9/12, which were hypoxia‐inducible. In addition to increased mRNA stability under hypoxia, we observed binding of HIF‐1α to select hypoxia‐responsive elements on CA9/12 promoters using genomic chromatin immunoprecipitation. Importantly, in vitro loss of function studies and analysis of discs from NP‐specific HIF‐1α null mice confirmed the dependency of CA9/12 expression on HIF‐1α. As expected, inhibition of CA activity decreased extracellular acidification rate independent of changes in HIF activity or lactate/H+ efflux. Surprisingly, CA inhibition resulted in a concomitant decrease in intracellular pH that was mirrored by inhibition of sodium‐bicarbonate importers. These results suggested that extracellular bicarbonate generated by CA9/12 is recycled to buffer cytosolic pH fluctuations. Importantly, long‐term intracellular acidification from CA inhibition lead to compromised cell viability, suggesting that plasma‐membrane proton extrusion pathways alone are not sufficient to maintain homeostatic pH in NP cells. Taken together, our studies show for the first time that bicarbonate buffering through the HIF‐1α–CA axis is critical for NP cell survival in the hypoxic niche of the intervertebral disc. © 2017 American Society for Bone and Mineral Research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142506/1/jbmr3293.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142506/2/jbmr3293-sup-0001-SuppData-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142506/3/jbmr3293_am.pd

    Differential Impact of EGFR-Targeted Therapies on Hypoxia Responses: Implications for Treatment Sensitivity in Triple-Negative Metastatic Breast Cancer

    Get PDF
    In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed.MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability.Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC

    Cathepsin K in lymphangioleiomyomatosis: LAM cell-fibroblast Interactions enhance protease activity by extracellular acidification

    Get PDF
    Lymphangioleiomyomatosis (LAM) is a rare disease in which clonal ‘LAM’ cells infiltrate the lungs and lymphatics. In association with recruited fibroblasts, LAM cells form nodules adjacent to lung cysts. It is assumed LAM nodule derived proteases lead to cyst formation although, this is uncertain. We profiled protease gene expression in whole lung tissue and observed cathepsin K was 40 fold over-expressed in LAM compared with control lungs (p≤0.0001). Immunohistochemistry confirmed cathepsin K protein in LAM nodules but not control lungs. Cathepsin K gene expression, protein and protease activity was detected in LAM associated fibroblasts but not the LAM cell line 621-101. In lung nodules, cathepsin K immune reactivity was predominantly co-localised with LAM associated fibroblasts. In vitro, extra-cellular cathepsin K activity was minimal at pH 7.5 but significantly enhanced in fibroblast cultures at pH 7 and 6. 621-101 cells reduced extracellular pH by 0.5 units over 24 hours. Acidification was dependent upon 621-101 cell mTOR activity and net hydrogen ion transporters, particularly sodium/bicarbonate co-transporters and carbonic anhydrases which were also expressed in LAM lung tissue. In LAM cell/fibroblast co-cultures, acidification paralleled cathepsin K activity and both were inhibited by sodium bicarbonate co-transporter (p≤0.0001) and carbonic anhydrase inhibitors (p=0.0021). Our findings suggest cathepsin K activity is dependent on LAM cell/fibroblast interactions and inhibitors of extracellular acidification may be potential therapies for LAM

    Virtual laboratories for education in science, technology, and engineering: A review

    Get PDF
    Within education, concepts such as distance learning, and open universities, are now becoming more widely used for teaching and learning. However, due to the nature of the subject domain, the teaching of Science, Technology, and Engineering are still relatively behind when using new technological approaches (particularly for online distance learning). The reason for this discrepancy lies in the fact that these fields often require laboratory exercises to provide effective skill acquisition and hands-on experience. Often it is difficult to make these laboratories accessible for online access. Either the real lab needs to be enabled for remote access or it needs to be replicated as a fully software-based virtual lab. We argue for the latter concept since it offers some advantages over remotely controlled real labs, which will be elaborated further in this paper. We are now seeing new emerging technologies that can overcome some of the potential difficulties in this area. These include: computer graphics, augmented reality, computational dynamics, and virtual worlds. This paper summarizes the state of the art in virtual laboratories and virtual worlds in the fields of science, technology, and engineering. The main research activity in these fields is discussed but special emphasis is put on the field of robotics due to the maturity of this area within the virtual-education community. This is not a coincidence; starting from its widely multidisciplinary character, robotics is a perfect example where all the other fields of engineering and physics can contribute. Thus, the use of virtual labs for other scientific and non-robotic engineering uses can be seen to share many of the same learning processes. This can include supporting the introduction of new concepts as part of learning about science and technology, and introducing more general engineering knowledge, through to supporting more constructive (and collaborative) education and training activities in a more complex engineering topic such as robotics. The objective of this paper is to outline this problem space in more detail and to create a valuable source of information that can help to define the starting position for future research
    corecore