272 research outputs found
3D global multi-species Hall-MHD simulation of the Cassini T9 flyby
The wake region of Titan is an important component of Titan's interaction with its surrounding plasma and therefore a thorough understanding of its formation and structure is of primary interest. The Cassini spacecraft passed through the distant downstream region of Titan on 18: 59: 30 UT Dec. 26, 2005, which is referred to as the T9 flyby and provided a great opportunity to test our understanding of the highly dynamic wake region. In this paper we compare the observational data (from the magnetometer, plasma analyzer and Langmuir probe) with numerical results using a 7-species Hall MHD Titan model. There is a good agreement between the observed and modeled parameters, given the uncertainties in plasma measurements and the approximations inherent in the Hall MHD model. Our simulation results also show that Hall MHD model results fit the observations better than the non-Hall MHD model for the flyby, consistent with the importance of kinetic effects in the Titan interaction. Based on the model results, we also identify various regions near Titan where Hall MHD models are applicable
Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography
Aims To establish four normal retinal nerve fibre layer (RNFL) thickness radial profiles based on third-generation optical coherence tomography (OCT) and to compare them with previously reported histologic measurements.Methods A total of 20 normal eyes were studied. A circular scan was adjusted to the size of the optic disc and three scans were performed with this radius and every 200 mu m thereafter, up to a distance of 1400 mu m. Four different radial sections (superotemporal, superonasal, inferonasal, and inferotemporal) were studied to establish RNFL thickness OCT profiles. Additionally, two radial scans orientated at 45 and 1351 crossing the optic disc centre were performed in six of 20 eyes, and RNFL thickness was measured at disc margin.Results Quadrant location and distance from disc margin interaction in RNFL thickness was statistically significant (P < 0.001). the RNFL thickness decreased (P < 0.001) as the distance from the disc margin increased for all sections. the measurements automatically generated by the OCT built-in software were thinner (P < 0.001) than histologic ones close to the disc margin.Conclusions Four normal OCT RNFL profiles were established and compared with histological data obtained from the same area. RNFL measurements assessed by OCT 3 were significantly thinner close to the optic disc margin.Hosp Olhos Araraquara, Glaucoma Sect, BR-14802530 Araraquara, SP, BrazilHosp Olhos Araraquara, Retina Diagnost & Treatment Div, BR-14802530 Araraquara, SP, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilUSP, Inst Fis Sao Carlos, Sao Carlos, SP, BrazilUniv So Calif, Doheny Eye Inst, Dept Ophthalmol, Los Angeles, CA USAUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc
The relationship between acculturation preferences and prejudice:Longitudinal evidence from majority and minority groups in three European countries
A longitudinal field survey tested the reciprocal effects of acculturation preferences and prejudice among ethnic minorities and majorities. Data were collected at two points in time from 512 members of ethnic minorities and 1143 majority members in Germany, Belgium and England. Path analyses yielded not only the lagged effects of prejudice on acculturation preferences but also the reverse for both majority and minority members. The mutual longitudinal effects between prejudice and desire for culture maintenance were negative, and the mutual effects between prejudice and desire for culture adoption were positive for majority members. The reverse was the case for minority participants. Moreover, the two acculturation dimensions interacted in their effect on prejudice for majority participants but not for minority participants. The effect of desire for culture adoption on prejudice was moderated by perceived intergroup similarity. Theoretical and practical implications of the findings are discussed. Copyright © 2014 John Wiley & Sons, Ltd
The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review
Background: The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest. This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the detection of multiple cancer types. Methods: The original mapping review was based on comprehensive searches of the electronic databases Medline, Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine whether validation data were reported, and then examined in full. Publications concentrating on monitoring of disease burden or mutations were excluded. Results: The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients. Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation changes (the majority using PCR-based methods). Conclusion: We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-analytical, analytical, and post-analytical considerations were identified which need to be addressed before such biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the inclusion of controls is highly questionable, and larger validation studies will be required before such methods can be considered for early cancer detection
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells
Oligonucleotide-mediated gene targeting is emerging as a powerful tool for the introduction of subtle gene modifications in mouse embryonic stem (ES) cells and the generation of mutant mice. However, its efficacy is strongly suppressed by DNA mismatch repair (MMR). Here we report a simple and rapid procedure for the generation of mouse mutants using transient down regulation of the central MMR protein MSH2 by RNA interference. We demonstrate that under this condition, unmodified single-stranded DNA oligonucleotides can be used to substitute single or several nucleotides. In particular, simultaneous substitution of four adjacent nucleotides was highly efficient, providing the opportunity to substitute virtually any given codon. We have used this method to create a codon substitution (N750F) in the Rb gene of mouse ES cells and show that the oligonucleotide-modified Rb allele can be transmitted through the germ line of mice
Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications
BackgroundDouble-stranded (ds) RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2alpha leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs). Fish and amphibian PKR genes have not been described so far.ResultsHere we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2alpha in yeast.ConclusionConsidering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both dsRNA and Z-DNA/RNA, and perhaps by altering sensitivity to viral PKR inhibitors. Further implications of our findings for the evolution of the PKR family and for studying PKR/PKZ interactions with viral gene products and their roles in viral infections are discussed
Androgen deprivation modulates the inflammatory response induced by irradiation
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine whether radiation (RT)-induced inflammatory responses and organ damage might be modulated by androgen deprivation therapies.</p> <p>Methods</p> <p>The mRNA and tissue sections obtained from the lungs, intestines and livers of irradiated mice with or without androgen deprivation were analyzed by real-time PCR and histological analysis. Activation of NF-kappa B was examined by measuring nuclear protein levels in the intestine and lung 24 h after irradiation. We also examined the levels of cyclooxygenase-2 (COX-2), TGF-β1 and p-AKT to elucidate the related pathway responsible to irradiation (RT) -induced fibrosis.</p> <p>Results</p> <p>We found androgen deprivation by castration significantly augmented RT-induced inflammation, associated with the increase NF-κB activation and COX-2 expression. However, administration of flutamide had no obvious effect on the radiation-induced inflammation response in the lung and intestine. These different responses were probably due to the increase of RT-induced NF-κB activation and COX-2 expression by castration or lupron treatment. In addition, our data suggest that TGF-β1 and the induced epithelial-mesenchymal transition (EMT) via the PI3K/Akt signaling pathway may contribute to RT-induced fibrosis.</p> <p>Conclusion</p> <p>When irradiation was given to patients with total androgen deprivation, the augmenting effects on the RT-induced inflammation and fibrosis should take into consideration for complications associated with radiotherapy.</p
Differential Allocation of Constitutive and Induced Chemical Defenses in Pine Tree Juveniles: A Test of the Optimal Defense Theory
Optimal defense theory (ODT) predicts that the within-plant quantitative allocation of defenses is not random, but driven by the potential relative contribution of particular plant tissues to overall fitness. These predictions have been poorly tested on long-lived woody plants. We explored the allocation of constitutive and methyl-jasmonate (MJ) inducible chemical defenses in six half-sib families of Pinus radiata juveniles. Specifically, we studied the quantitative allocation of resin and polyphenolics (the two major secondary chemicals in pine trees) to tissues with contrasting fitness value (stem phloem, stem xylem and needles) across three parts of the plants (basal, middle and apical upper part), using nitrogen concentration as a proxy of tissue value. Concentration of nitrogen in the phloem, xylem and needles was found to be greater higher up the plant. As predicted by the ODT, the same pattern was found for the concentration of non-volatile resin in the stem. However, in leaf tissues the concentrations of both resin and total phenolics were greater towards the base of the plant. Two weeks after MJ application, the concentrations of nitrogen in the phloem, resin in the stem and total phenolics in the needles increased by roughly 25% compared with the control plants, inducibility was similar across all plant parts, and families differed in the inducibility of resin compounds in the stem. In contrast, no significant changes were observed either for phenolics in the stems, or for resin in the needles after MJ application. Concentration of resin in the phloem was double that in the xylem and MJ-inducible, with inducibility being greater towards the base of the stem. In contrast, resin in the xylem was not MJ-inducible and increased in concentration higher up the plant. The pattern of inducibility by MJ-signaling in juvenile P. radiata is tissue, chemical-defense and plant-part specific, and is genetically variable
- …
