320 research outputs found

    Relationship between blood pressure repeatedly measured by a wrist-cuff oscillometric wearable blood pressure monitoring device and left ventricular mass index in working hypertensive patients

    Get PDF
    This study sought to evaluate the relationship between blood pressure (BP) taken by a new wrist-cuff oscillometric wearable BP monitoring device and left ventricular mass index measured by cardiac magnetic resonance imaging (cMRI-LVMI) in 50 hypertensive patients (mean age 60.5 ± 8.9 years, 92.0% men, 96% treated for hypertension) with regular employment. Participants were asked to self-measure their wearable BPs twice in the morning and evening under a guideline-recommended standardized home BP measurement, and once each at five predetermined times and any additional time points under an ambulatory condition for a maximum of 7 days. In total, 2105 wearable BP measurements (home BP: 747 [morning: 409, evening: 338], ambulatory condition: 1358 [worksite: 942]) were collected over 5.5 ± 1.2 days. The average of all wearable systolic BP (SBP) readings (129.8 ± 11.0 mmHg) was weakly correlated with cMRI-LVMI (r = 0.265, p = 0.063). Morning home wearable SBP average (128.5 ± 13.8 mmHg) was significantly correlated with cMRI-LVMI (r = 0.378, p = 0.013), but ambulatory wearable SBP average (132.5 ± 12.7 mmHg) was not (r = 0.215, p = 0.135). The averages of the highest three values of all wearable SBPs (153.3 ± 13.9 mmHg) and ambulatory wearable SBPs (152.9 ± 13.9 mmHg) were 16 mmHg higher than that of the morning home wearable SBPs (137.0 ± 15.9 mmHg). Those peak values were significantly correlated with cMRI-LVMI (r = 0.320, p = 0.023; r = 0.310, p = 0.029; r = 0.451, p = 0.002, respectively). In conclusion, an increased number of wearable BP measurements, which could detect individual peak BP, might add to the clinical value of these measurements as a complement to the guideline-recommended home BP measurements, but further studies are needed to confirm these findings

    The Evolution of Light Stress Proteins in Photosynthetic Organisms

    Get PDF
    The Elip (early light-inducible protein) family in pro- and eukaryotic photosynthetic organisms consists of more than 100 different stress proteins. These proteins accumulate in photosynthetic membranes in response to light stress and have photoprotective functions. At the amino acid level, members of the Elip family are closely related to light-harvesting chlorophyll a/b-binding (Cab) antenna proteins of photosystem I and II, present in higher plants and some algae. Based on their predicted secondary structure, members of the Elip family are divided into three groups: (a) one-helix Hlips (high light-induced proteins), also called Scps (small Cab-like proteins) or Ohps (one-helix proteins); (b) two-helix Seps (stress-enhanced proteins); and (c) three-helix Elips and related proteins. Despite having different physiological functions it is believed that eukaryotic three-helix Cab proteins evolved from the prokaryotic Hlips through a series of duplications and fusions. In this review we analyse the occurrence of Elip family members in various photosynthetic prokaryotic and eukaryotic organisms and discuss their evolutionary relationship with Cab proteins

    Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families

    Get PDF
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    Research and Development of Information and Communication Technology-based Home Blood Pressure Monitoring from Morning to Nocturnal Hypertension

    Get PDF
    Asians have specific characteristics of hypertension (HTN) and its relationship with cardiovascular disease. The morning surge in blood pressure (BP) in Asians is more extended, and the association slope between higher BP and the risk for cardiovascular events is steeper in this population than in whites. Thus, 24-hour BP control including at night and in the morning is especially important for Asian patients with HTN. There are 3 components of “perfect 24-hour BP control”: the 24-hour BP level, adequate dipping of nocturnal BP (dipper type), and adequate BP variability such as the morning BP surge. The morning BP-guided approach using home BP monitoring (HBPM) is the first step toward perfect 24-hour BP control. After controlling morning HTN, nocturnal HTN is the second target. We have been developing HBPM that can measure nocturnal BP. First, we developed a semiautomatic HBPM device with the function of automatic fixed-interval BP measurement during sleep. In the J-HOP (Japan Morning Surge Home Blood Pressure) study, the largest nationwide home BP cohort, we successfully measured nocturnal home BP using this device with data memory, 3 times during sleep (2, 3, and 4 am), and found that nocturnal home BP is significantly correlated with organ damage independently of office and morning BP values. The second advance was the development of trigger nocturnal BP (TNP) monitoring with an added trigger function that initiates BP measurements when oxygen desaturation falls below a variable threshold continuously monitored by pulse oximetry. TNP can detect the specific nocturnal BP surges triggered by hypoxic episodes in patients with sleep apnea syndrome. We also added the lowest heart rate-trigger function to TNP to detect the “basal nocturnal BP,” which is determined by the circulating volume and structural cardiovascular system without any increase in sympathetic tonus. This double TNP is a novel concept for evaluating the pathogenic pressor mechanism of nocturnal BP. These data are now collected using an information and communication technology (ICT)-based monitoring system. The BP variability includes different time-phase variability from the shortest beat-by-beat, positional, diurnal, day-by-day, visit-to-visit, seasonal, and the longest yearly changes. The synergistic resonance of each type of BP variability would produce great dynamic BP surges, which trigger cardiovascular events. Thus, in the future, the management of HTN based on the simultaneous assessment of the resonance of all of the BP variability phenotypes using a wearable “surge” BP monitoring device with an ICT-based data analysis system will contribute to the ultimate individualized medication for cardiovascular disease

    Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in Northern Chile, are highly similar to Antarctic cyanobacteria

    Get PDF
    The diversity of Cyanobacteria in water and sediment samples from four representative sites of the Salar de Huasco was examined using denaturing gradient gel electrophoresis and analysis of clone libraries of 16S rRNA gene PCR products. Salar de Huasco is a high altitude (3800 m altitude) saline wetland located in the Chilean Altiplano. We analyzed samples from a tributary stream (H0) and three shallow lagoons (H1, H4, H6) that contrasted in their physicochemical conditions and associated biota. Seventy-eight phylotypes were identified in a total of 268 clonal sequences deriving from seven clone libraries of water and sediment samples. Oscillatoriales were frequently found in water samples from sites H0, H1 and H4 and in sediment samples from sites H1 and H4. Pleurocapsales were found only at site H0, while Chroococcales were recovered from sediment samples of sites H0 and H1, and from water samples of site H1. Nostocales were found in sediment samples from sites H1 and H4, and water samples from site H1 and were largely represented by sequences highly similar to Nodularia spumigena. We suggest that cyanobacterial communities from Salar de Huasco are unique - they include sequences related to others previously described from the Antarctic, along with others from diverse, but less extreme environments

    Ancient origins determine global biogeography of hot and cold desert cyanobacteria

    Get PDF
    Factors governing large-scale spatio-temporal distribution of microorganisms remain unresolved, yet are pivotal to understanding ecosystem value and function. Molecular genetic analyses have focused on the influence of niche and neutral processes in determining spatial patterns without considering the temporal scale. Here, we use temporal phylogenetic analysis calibrated using microfossil data for a globally sampled desert cyanobacterium, Chroococcidiopsis, to investigate spatio-temporal patterns in microbial biogeography and evolution. Multilocus phylogenetic associations were dependent on contemporary climate with no evidence for distance-related patterns. Massively parallel pyrosequencing of environmental samples confirmed that Chroococcidiopsis variants were specific to either hot or cold deserts. Temporally scaled phylogenetic analyses showed no evidence of recent inter-regional gene flow, indicating populations have not shared common ancestry since before the formation of modern continents. These results indicate that global distribution of desert cyanobacteria has not resulted from widespread contemporary dispersal but is an ancient evolutionary legacy. This highlights the importance of considering temporal scales in microbial biogeography

    Light emitting diodes (LEDs) applied to microalgal production.

    Get PDF
    Light-emitting diodes (LEDs) will become one of the world's most important light sources and their integration in microalgal production systems (photobioreactors) needs to be considered. LEDs can improve the quality and quantity of microalgal biomass when applied during specific growth phases. However, microalgae need a balanced mix of wavelengths for normal growth, and respond to light differently according to the pigments acquired or lost during their evolutionary history. This review highlights recently published results on the effect of LEDs on microalgal physiology and biochemistry and how this knowledge can be applied in selecting different LEDs with specific technical properties for regulating biomass production by microalgae belonging to diverse taxonomic groups

    Variation in Tropical Reef Symbiont Metagenomes Defined by Secondary Metabolism

    Get PDF
    The complex evolution of secondary metabolism is important in biology, drug development, and synthetic biology. To examine this problem at a fine scale, we compared the genomes and chemistry of 24 strains of uncultivated cyanobacteria, Prochloron didemni, that live symbiotically with tropical ascidians and that produce natural products isolated from the animals. Although several animal species were obtained along a >5500 km transect of the Pacific Ocean, P. didemni strains are >97% identical across much of their genomes, with only a few exceptions concentrated in secondary metabolism. Secondary metabolic gene clusters were sporadically present or absent in identical genomic locations with no consistent pattern of co-occurrence. Discrete mutations were observed, leading to new chemicals that we isolated from animals. Functional cassettes encoding diverse chemicals are exchanged among a single population of symbiotic P. didemni that spans the tropical Pacific, providing the host animals with a varying arsenal of secondary metabolites

    Detecting small low emission radiating sources

    Full text link
    The article addresses the possibility of robust detection of geometrically small, low emission sources on a significantly stronger background. This problem is important for homeland security. A technique of detecting such sources using Compton type cameras is developed, which is shown on numerical examples to have high sensitivity and specificity and also allows to assign confidence probabilities of the detection. 2D case is considered in detail

    Selection of Suitable Reference Genes for RT-qPCR Analyses in Cyanobacteria

    Get PDF
    Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR) is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works
    corecore