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Abstract

Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating
estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of
geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination
in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included
34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from
29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of
separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the
rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates
indicate that the short-term mutation rate is 1.461026 (serial isolates) to 4.561026 (family isolates) per nucleotide per year
and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate
over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection.
Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species
and can span a range of several orders of magnitude.
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Introduction

When did modern pathogenic bacteria evolve? Current wisdom

teaches that 10,000–50,000 years have elapsed since a variety of

genetically highly monomorphic bacterial pathogens evolved from

their last common ancestors [1–6] and the ages of pathogenic

bacteria with greater levels of genetic diversity have been

estimated as reflecting millions of years of evolution [7,8]. Age

estimates for bacteria are higher than those of viruses, many of

which appeared a few hundred years ago [9], primarily because

many bacterial estimates are based on a supposedly universal

molecular clock rate, mS, for synonymous polymorphisms in genes

that encode proteins. In 1987, Ochman and Wilson calibrated this

clock rate as 3.461029 per nucleotide per year by dating the split

between Escherichia coli and Salmonella enterica within the framework

of a universal clock rate for bacterial rRNA sequences [10]. The

divergence between E. coli and S. enterica was equated with the age

of mammals, estimated as ,160 Myr. However, the validity of this

molecular clock rate for dating bacterial evolution is highly

questionable.

Some of the geological dates used to calibrate the rRNA clock

rate have since been revised (Table 1). These revisions are so

drastic that the original linear regression of diversity with time [10]

is no longer valid [11] (Figure 1). Furthermore, the estimate of

,160 Mya for the age of the split between E. coli and S. enterica

depends on the assumption that E. coli is specific for mammalian

hosts, unlike S. enterica which infects reptiles as well as mammals.

But E. coli can be readily isolated from reptiles or birds [12], which

invalidates this argument. An independent recent study also dates

the split between E. coli and S. enterica at 57–176 Mya on the basis

of long-term phylogenies of protein-encoding sequences [13].

However, both this recent estimate and the original estimate of

Ochman and Wilson share the problem that geological events that

occurred billions of years ago are extrapolated to speciation events

that supposedly occurred ,100 Mya, which implicitly assumes

that molecular clock rates are linear over large time scales for

diverse microorganisms. This is unlikely to be the case (see below).

The use of such long-term clock rates is even more problematical

for age estimates of divergence within genetically monomorphic or

recently emerged pathogens [1–6], which require extrapolations

over a further three to four orders of magnitude.

Long-term clock rates are now thought to accelerate by one to

two orders of magnitude for recent events [14,15]. Furthermore,

clock rates for genetic diversity between species should not be used
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for dating within a species. Diversity between species represents

fixation events whereas diversity within a species reflects the

accumulation of polymorphisms [16,17]. Finally, molecular clock

rates probably vary between different bacterial species, which can

differ by up to two orders of magnitude in their relative ratios of

divergence of rRNA to protein-encoding genes [18]. As a result of

these considerations, almost all age estimates for recently evolved

bacterial pathogens need to be reconsidered [19] and should be

based on species-specific short-term molecular clock rates.

Age estimates for viruses depend on the use of archival samples

that were stored over several years or decades. Only very few

attempts, summarized in Table 2, have been made to estimate

ages in bacteria with this approach, in part because their clock

rates were thought to be too slow. In the case of Yersinia pestis which

was introduced to Madagascar in the early 20th century, the clock

rate was similar to that of Ochman and Wilson (Table 2).

However, a clock rate dated by migration of Buchnera, an aphid

endosymbiote, to North America in the late 19th century is two

orders of magnitude higher (Table 2).

Two recent studies of Campylobacter jejuni and Vibrio cholerae have

found synonymous clock rates of .1026 per site per year, several

orders of magnitude higher than the clock rate of Wilson and

Ochman. However, we are sceptical about the validity of these two

estimates due to problems with their sampling schemes. The C.

jejuni isolates were obtained over a three year period from infected

humans within a sampling area of only 968 km2 in Lancashire,

England [20], and might reflect admixture due to the import of

novel polymorphisms from outside the catchment area. Similarly,

the V. cholerae estimates were based on a comparison of only three

genomes whose epidemiological patterns suggested that they had

evolved soon before the dates of sampling [21]. A third recent

study found a clock rate of 361026 for ST239 of Staphylococcus

aureus, which would mean that ST239 evolved in the mid-1960’s

[22]. However, the ST239 genealogy consists of multiple, early

radiations, which suggests adaptation due to selective pressures.

Clock rates are distorted when based on polymorphisms that are

under positive selection because adaptation can increase the

fixation rate for mutations by orders of magnitude [2]. As an

extreme example, serial isolates from human infections that are

repeatedly treated with antibiotics acquire mutations that are

associated with antibiotic resistance and can result in hyper-

mutation [23]. 68 mutations in the 6.5 Mbp genome were

observed over eight years of lung infection by Pseudomonas aeruginosa

in a patient with cystic fibrosis [24] and 35 mutations in the

2.9 Mbp genome during 12 weeks of endocarditis caused by S.

aureus [25]. Similarly, patho-adaptive, transient mutations in an E.

coli adhesin are selected during infection of the urinary tract but

rapidly disappear due to source-sink dynamics [26]. Short-term

positive selection may be common because an appreciable fraction

of E. coli genes show traces of such selection [27].

These various analyses show that mutation rates may be

sufficiently high in some bacteria that microevolution can be

observed within serial bacterial isolates from individual humans.

Here we analyze such microevolution within Helicobacter pylori. H.

pylori is commonly acquired in childhood, after which, in the

absence of antibiotic therapy, it can continue to infect the

stomachs of humans over their entire lifespan [28]. H. pylori has

infected humans for at least 60,000 years because it accompanied

anatomically modern humans out of Africa [29–33]. H. pylori also

exhibits an atypically high genetic diversity: every third nucleotide

in housekeeping gene fragments is polymorphic in global analyses

[30,34], and the pair-wise synonymous diversity of individual

genes ranges from 0.1–0.3 [34]. High genetic diversity can reflect a

long evolutionary history but can also result from a high mutation

Author Summary

Mutation rates in bacteria have generally been considered
to be much slower than in viruses. This is partly because
estimates of long-term mutation rates for the evolution of
distinct species have been inappropriately used for dating
divergence within species. Furthermore, the most com-
monly used long-term mutation rate is based on
geological dates that are no longer accepted. In addition,
only few short-term mutation rates have been calculated
within bacterial species, and these differ with the species
by several orders of magnitude. Here, we provide robust
estimates for short-term mutation and recombination rates
within Helicobacter pylori, a bacterium that commonly
infects the human gastric mucosa, based on serial isolates
from long-term infections and on differences between
isolates from multiple family members. These short-term
mutation rates are 5–17-fold faster than long-term
mutation rates in H. pylori that have been calibrated by
parallel ancient migrations of humans. Short-term muta-
tion rates in bacteria, including those for H. pylori, can be
quite fast, partially overlapping with those for viruses.
Future calculations of ages of bacterial species will need to
account for dramatic differences in mutation rate between
species and for dramatic differences between short- and
long-term mutation rates.

Table 1. Comparisons of dating used by Ochman and Wilson, 1987 [10] with current estimates.

Time Point Event Old Estimate (MYa) Current Estimate (MYa) Citation

A Cyanobacteria .1,300 .2,400 [64]

B-C Photosynthetic eukaryotes .800 .1,200 [65]

C Oxygen ,2,000 2,300 [66]

D Oxidative eukaryotes .800 .1,400 [67]

E High concentration O2 ,800

F Light organs .50

G Eyes ,500 .531 [68]

H Land plants ,400 450

I Mammals ,150 .162 [69]

J Legumes .100 .84 [70]

doi:10.1371/journal.pgen.1001036.t001

Mutation and Recombination Rates in H. pylori
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rate. Indeed, the frequency of mutants per cell among natural

isolates is approximately 10–100 fold higher in laboratory

experiments than for E. coli [35,36], with some variation between

individual isolates. That high mutation frequency may reflect the

lack of genes encoding the MutHLS1 mismatch repair system

[28,37]. A high mutation rate in the laboratory suggests that the

mutational clock rate may also be high during natural infection,

possibly facilitating the adaptation of these bacteria to individual

human hosts [38]. However, as for most bacteria, robust estimates

of the microevolutionary mutation rate are lacking.

In addition to a high mutation rate, recombination is also

particularly frequent in H. pylori. This conclusion was originally

reached on the basis of homoplasy analysis [39]. Although this

methodology has been recently criticized [40], recombination is

clearly frequent in nature because mosaic imports have been

observed, a direct signal for homologous recombination. In

laboratory experiments, DNA transformation followed by homol-

ogous recombination introduces mosaic stretches of 1.3–3.9 Kbp

into the recipient, occasionally interrupted by interspersed

segments of recipient DNA sequences that have not been replaced

[41,42]. In nature, mixed infection of individual humans with

multiple distinct strains [43–48] occurs sufficiently frequently that

unambiguous mosaics were detected in serial isolates [49] or

isolates from members of a family [47]. Recombination is also

indicated by analyses using STRUCTURE [33] and the three gamete

test [29] on random isolates from diverse global sources. In the

analyses of serial isolates [49], the sequences of 10 gene fragments

were compared between pairs of strains that were isolated from 26

individuals in Louisiana and Colombia at intervals of 3–36 months

(mean 1.8 years). No sequence differences were found in 14 pairs,

Figure 1. Percentage diversity in rRNA versus age (million years). (A) original correlation by Ochman and Wilson [10]. (B) lack of good
correlation according to modern estimates of age ranges (Table 1).
doi:10.1371/journal.pgen.1001036.g001

Mutation and Recombination Rates in H. pylori
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three pairs of isolates differed by a single nucleotide, and six pairs

of isolates differed by eight mosaic stretches. (Four other pairs were

excluded from analysis because they either reflected mixed

infections with genetically unrelated strains or an infection with

a cloud of related isolates whose genetic diversity had arisen prior

to infection.) For the 6 pairs of isolates with mosaic stretches,

homologous recombination had introduced imports of an average

size of 417 bp (CI [95% confidence interval] 259–732) at a rate

per nucleotide per year of 6.961025 (CI 3.561025 to 1.261024).

The three pairs that differed by a single polymorphism were used

to calculate a maximal mutation rate per nucleotide per year of

4.161025, but these polymorphisms could not be definitively

ascribed to mutation because they might have represented

atypically short imports [49].

Here we have reanalyzed the same pairs of isolates plus others

that spanned longer time periods. We examined the sequence

diversity in 78 gene fragments in order to provide robust short-

term clock rates for mutation and recombination. These clock

rates were compared to long-term clock rates that were calibrated

by the dates of human migrations.

Results

Novel nucleotide sequences
We sequenced 78 gene fragments from 97 isolates (Table 3,

Table S1, Table S2). Two of these fragments are parts of genes

that encode outer membrane proteins and all others are within

housekeeping genes. We first sequenced an average of 398 bp

from each gene fragment; for fragments with polymorphisms we

also sequenced ,500 bp from each of the flanking regions. This

resulted in an average total of 39,301 bp that was sequenced per

isolate, almost ten times more than in our previous study [49].

The 97 isolates included 34 pairs of serial isolates from

continuously infected individuals, of which 22 had been the

subject of our previous analysis [49]. Twelve other pairs were

from chronically infected patients in the Netherlands [50] with an

average sampling interval of 8.4 years (Table 3). The remaining

29 isolates were from 10 families consisting of siblings plus their

parents with an average age of 44.5 years from Colombia (4

families), Korea (3), the UK (2) and the USA (1) [47]. The strains

within each pair or group of isolates must have diverged very

recently because each pair/group shared identical sequences

within at least four of the seven MLST housekeeping fragments.

In contrast, in previous population genetic studies based on these

seven gene fragments [30,32,33,47], random pairs of isolates

were usually distinct at all or most of the seven gene fragments.

Despite the limited differences found here between pairs of

isolates, the frequency of polymorphic sites across the entire data

set was high (0.1860.04), almost as high as in a comparison of the

same 78 gene fragments from seven genomic sequences

(0.2760.07; Table S4).

Sequence comparisons
Figure 2 shows a comparison of the paired sequences from the

serial isolates. Out of a total of 2650 pair-wise sequence

comparisons of gene fragments, 62 contained 1 polymorphic site,

12 showed two polymorphisms and 50 showed more than two

polymorphisms. The total number of fragments with sequence

differences correlates significantly with the time difference between

the serial samples (R = 0.4, p = 0.02; Figure 3A), referred to as the

minimal age below. Thus, sequence diversity introduced by

mutation plus recombination seems to accumulate in a clock-like

manner in infected individuals. We note that minimal age

represents only a lower bound for the time of divergence between

those isolates because the variant might have arisen earlier and

persisted together with the parent in the form of a mixed infection.

The maximal age is the extreme opposite scenario to the minimal

age, namely that the variants evolved soon after birth. We

approximated the maximal time of divergence within each

individual as the sum of the ages at sampling. There is apparently

no correlation between this maximal age and the number of

polymorphic fragments (R = 0.07, p = 0.7, Figure 3B).

Table 2. Published ages and clock rates for microevolution in selected bacteria.

Taxon Clock rate Age (yrs) Citation Sampling period (yrs)

Campylobacter jejuni mS = 2.861025 400 [20] 3

pandemic Vibrio cholerae mS = 6.761025 130 [21] 34

Staphylococcus aureus ST239 m= 3.361026 45 [22] 21

Yersinia pestis (Madagascar) m= 8.661029 100 submitted 70

H. pylori serial isolates mS = ,261025 .11,000 [49] 1.8

Buchnera (North America) mS = 2.261027 ,135 [71] extant

H. pylori in Pacific m= 2.661027 70,000 [29] extant

NOTE: H. pylori in Pacific was calculated from the raw output of the ClonalFrame analyses in citation [29] as m= theta/2/coalescent unit/concatenated sequence length
where theta, the mutation rate x 2, was 720.8 (95% confidence interval [CI] 508.4–985.9), coalescent unit was 400,000 yrs and concatenated sequence length was
3,412 bp. The confidence limits of m were 1.861027 to 3.661027.
mS: synonymous clock rate per nucleotide per year.
m: mutational clock rate per nucleotide per year. The sampling period is designated as extant when date of sampling was not considered in date estimates.
doi:10.1371/journal.pgen.1001036.t002

Table 3. Sequence comparisons and sources of isolates.

Category Details

Number of gene fragments 78

Standard sequence (range) 398 bp (294–627)

Extended sequence (range) 1417 bp (954–1744)

Mean total bp per isolate (range) 39,301 (30,775–60,447)

44 serial isolates: Pairs: mean interval (range) 1–22: 1.8 yrs (0.25–4.0)

24 serial isolates: Pairs: mean interval (range) 33–44: 8.4 yrs (7.4–10.2)

29 family isolates: Groups: mean age (range) 23–32: 44.5 yrs (10–78)

doi:10.1371/journal.pgen.1001036.t003

Mutation and Recombination Rates in H. pylori
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Pair-wise comparisons of sequences from the family isolates

revealed even greater diversity (Figure 4), as expected because the

time of separation of these pairs is greater. Out of 2568 pair-wise

gene fragment comparisons, 183 showed one nucleotide differ-

ence, 30 had two and 186 had at least three. However, although

the longer time span for divergence of the family isolates was

expected to show even stronger correlations with time, this was not

the case. Instead, we could not find a significant correlation

between the numbers of non-identical gene fragments and any

function of the age of the family members that was tested. For

example, if infection were transmitted to siblings or children when

they reached 20 years of age, a significant correlation should have

been observed between the numbers of distinct gene fragment

sequences and the minimum age of the two family members – 20

(minimal age), but this was not the case (R = 20.19; p = 0.28)

(Figure 3C). Similarly, if each of the family members were infected

at birth, a significant correlation would have been expected against

the sum of the ages of the two family members (maximal age), but

again this was not the case (R = 0.03; p = 0.86; Figure 3D). Visual

examination of the data indicated that this lack of correlation with

age largely reflected two families, numbers 23 and 26, which had

unusually high levels of polymorphism. After removal of data from

these two families, the number of differences was significantly

correlated with maximal age (R = 0.4; p = 0.045; Figure S1D).

Model-based analysis
We designed a statistical model of the microevolutionary

process in order to analyze our data. Our model assumes that

each sequenced fragment evolved independently for an unknown

number of years. During that time, mutation events happen

according to a molecular clock with a constant rate m per site and

per year, and independent recombination events occur in and

around the fragment at a constant rate r per initiation site and per

year. We follow Falush et al. [49] in assuming that when a

recombination event happens, it affects a stretch of DNA with a

geometrically distributed length of mean l from the initiation

point. In the affected region, each site has a probability of being

substituted which is drawn from a normal distribution with mean

equal to n. Our recombination model is therefore similar to that of

ClonalFrame [51], except that the rate of substitution introduced

by each recombination event is drawn from a distribution rather

than being constant. The use of such a distribution is

advantageous because it reflects the diversity of the level of

relatedness between donor and recipient for all recombination

events.

We applied this microevolutionary model to our data using

Approximate Bayesian Computation (ABC). ABC is a Monte-

Carlo method to perform statistical inference on the parameters of

a model using summary statistics [52], and is well suited to deal

with the complex models that arise in population genetics [53–55].

We therefore performed ABC inference under the model

described above, using the algorithm described by Marjoram

et al. [56]. This algorithm uses a Monte-Carlo Markov Chain, but

instead of guiding the random walk on the parameter space

according to the likelihood, as is usually done, it is guided

according to the ability of the parameters to produce a dataset

with similar summary statistics (see Materials and Methods).

Our model can be directly applied to the serial isolate data since

it describes the evolution between a pair of isolates, resulting in the

parameter estimates that are summarized in the first column of

Table 4. However, we also wanted to perform the same statistical

analysis with the family isolate data as for the serial isolate data. To

do so, we first attempted to deduce the genealogical relationships

between the isolates within each family using ClonalFrame [51],

but the statistical uncertainty found in these reconstructions was

too high to make this approach practical, i.e. it is unclear who

Figure 2. Sequence differences for 78 gene fragments (X axis) that were tested from 34 pairs of sequential isolates (Y axis). Of 2,650
pairs of sequenced gene fragments, 2,526 were identical (white), 62 differ by one polymorphism (green), 12 had two polymorphisms (red), and 50
had at least three (black). Two question marks indicate missing data that were not used for comparisons. Gene fragments are designated by their
designations in the genome of 26695 (HPxxxx) [63], except that the first seven gene fragments that are used for MLST of H. pylori [34] also include the
gene designations.
doi:10.1371/journal.pgen.1001036.g002

Mutation and Recombination Rates in H. pylori
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infected whom. Therefore, we made no assumptions about

phylogeny but rather performed pair-wise comparisons of each

pair of isolates within a family. This technique has the

disadvantage that it might count some microevolutionary events

several times in the pair-wise comparisons, but it is the only

approach available in the absence of a robust estimate of

phylogenies. The parameter estimates for the family data are also

reported in Table 4.

Model validation
We assessed the validity of our model by comparing the

observed distributions for two summary statistics that were not

used in the ABC inference with their posterior predictive

distributions [57], i.e. the distribution obtained by simulations

using parameters from the posterior sample (Figure 5). This

method of model criticism has been applied previously in multiple

ABC studies [58,59]. The distribution of the number of

polymorphisms per gene fragment was quite similar between the

data and the posterior simulations from the serial isolates: most

gene fragments contained only one polymorphism, several

contained two or three polymorphisms, and the frequencies of

larger numbers of polymorphisms were spread fairly uniformly

over the entire data set (Figure 5A). The length of the polymorphic

stretches was less uniform (Figure 5B). The data contained

multiple fragments with polymorphisms in stretches of less than

50 bp whereas larger polymorphic stretches were distributed fairly

evenly up to the maximum length of just under 1,600 bp. In

contrast, the posterior predictive distribution of lengths of

Figure 3. Age versus number of different gene fragments in pairwise comparisons. (A,B) serial isolates. (C, D) isolates within each family.
(A) Minimum age was the time separation between pairs of isolates. (B) Maximum age was the sum of the ages of the infected person upon isolation
of the serial isolates. (C) Minimum age was the minimum age of the two subjects—20. (D) Maximum age was the sum of the ages of the two family
members. Each plot contains a linear regression of the data, whose correlation (R) and probability (p) are indicated above the plot.
doi:10.1371/journal.pgen.1001036.g003

Mutation and Recombination Rates in H. pylori
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polymorphic stretches was fairly uniform, except that stretches of

500–900 bp and of 1,300–1,500 bp were somewhat more

frequent. However, these differences between observed data and

simulations were relatively minor, again providing support for the

validity of our model and inference methodology. Similarly, only

minor differences were found when comparing the family data in

the same way (Figure S2).

Discussion

Parameter estimates for the sequential isolate data
The average rate of polymorphism introduced by recombina-

tion events (n) was 0.02 (Table 4), which is somewhat lower than

the average genetic distance between unrelated members of H.

pylori from Ladakh in northern India (0.03) [32] or Europe (0.04)

[33]. In turn, this lower rate indicates that donors and recipients

were somewhat more closely related than are random, unrelated

isolates, and may reflect increased opportunities for recombination

within members of the same subpopulations due to geographical

structure [47]. Local geographic structure arises due to isolation by

distance [30] and isolates within families may have had more

opportunities for prior recombination events that would reduce

diversity than do geographically separated isolates.

The mean length of imports (l) was 1247 bp, which is in good

agreement with recent estimates from experimental work [41,42],

but considerably greater than the value of 417 bp found previously

among serial isolates by Falush et al. [49]. We ascribe this

discrepancy to the limited number (eight) of recombination events

examined by Falush et al. rather than to differences in

methodology. The combination of these two estimates (l ? n)

indicates that on average 18.6 nucleotide substitutions were

introduced by each recombination event, although this number

ranged greatly between individual recombination events

(Figure 5A).

The average rate of mutation m (per nucleotide site, per year)

was estimated as 1.461026 and the average rate of recombination

r (per initiation site, per year) was 2.461027. These estimates are

sensitive to our choice of prior for the evolutionary time of split

Figure 4. Pair-wise comparison of sequences from 29 isolates acquired from members of 10 families. Of 2,568 sequenced gene
fragments, 2,169 were identical (white), 183 had one difference (green), 30 had two differences (red), and 186 had at least four differences (black). Six
question marks indicate missing data that were not used for comparisons.
doi:10.1371/journal.pgen.1001036.g004

Table 4. Estimated average [95% credibility intervals] of parameters from ABC analysis.

Parameter Serial Isolates Family Isolates

m (mutation rate) 1.3661026 [0.8861026;1.8961026] 4.5161026 [3.4861026;5.4061026]

r (recombination rate) 2.4461027 [1.7461027;3.4561027] 8.0761027 [5.9561027;10.4261027]

l (tract length, bp) 1,247 [841;1721] 1,419 [1008;1763]

n (polymorphism rate) 0.016 [0.006;0.026] 0.022 [0.017;0.028]

n ? l (polymorphisms) 18.62 [7.67;28.03] 30.96 [20.91;46.13]

r/m 0.19 [0.11;0.26] 0.18 [0.13;0.25]

r ? l ? n/m 3.35 [1.66;5.56] 5.49 [3.46;8.06]

doi:10.1371/journal.pgen.1001036.t004

Mutation and Recombination Rates in H. pylori
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between isolates, on which there is much uncertainty. However,

Figure 3A provides support for clock-like microevolution versus

the time of isolation of the paired isolates (minimal age) and the

ABC analyses were performed using very uninformative priors for

their time of separation, consisting of the range since birth to the

time of isolation of the bacterial strains. Furthermore, data and

simulations based on the estimated parameters correspond well in

regard to the frequencies of numbers of polymorphisms and

reasonably well for the lengths of polymorphic stretches (Figure 5).

We therefore conclude that these estimates are reasonably

accurate as measures of mutation and recombination rates over

very short time periods of up to 10 years.

Figure 5. Comparisons of observed and simulated data for sequences from serial isolates. (A) relative frequency of numbers of
polymorphisms. (B) cumulative frequency of the lengths of polymorphic stretches. Comparable data for the family isolates are presented in Figure S2.
doi:10.1371/journal.pgen.1001036.g005
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The ratio r/m should be a robust measure of the relative

frequencies at which mutation and recombination are initiated at a

given site because both r and m are equally affected by any under- or

over-estimation of the split times. The mean estimate for r/m is 0.19.

Thus mutations are on average 5 times more frequent than

recombination events over the genome of H. pylori. However, even

though it happens less often than does mutation, the effect of

recombination is much more dramatic than that of mutation, as

indicated in Table 4 by the estimate of 3.4 for r ? l ? n/m, which

represents the ratio of rates at which a site is substituted through

recombination and mutation. According to this estimate, a site is .3

times as likely to be substituted by recombination than by mutation.

Parameter estimates for the family isolate data
The average estimates for m and r were about 3 times higher

within the families than in the paired isolates (Table 4). We

considered the possibility that the different estimates of r and m

between serial and family data might reflect the fact that families

23 and 26 exhibited elevated numbers of polymorphisms.

However, after excluding these two families, the resulting

parameter estimates did not differ dramatically from the estimates

summarized in Table 4. We note, however, that in the absence of

specific evidence from the data, Bayesian analysis with a broad

uniform prior will tend to settle on values within the range of the

prior rather than at the extremes. Genetic diversity within families

correlated with maximal age (after excluding families 23 and 26;

Figure S1D) whereas diversity between serial isolates correlated

with minimal age (Figure 3A). Thus, this tendency to use internal

values within a broad prior range would shift our parameter

estimates for the serial and family isolates in opposite directions

away from the extreme age that best correlated with diversity, and

could well account for the threefold difference between the two

sets of parameter estimates. Finally, we also note that we tested 10

family isolates to see whether the elevated numbers of polymor-

phisms in families 23 and 26 were accompanied by extreme in vitro

frequencies of mutation and DNA transformation (from strain

J99). However, although a broad range was measured for the

frequencies of both mutation (sevenfold) and transformation (200

fold) (each with one outlier), there was no clear correlation

between the two exceptional families and the extremes of the

laboratory rates (data not shown).

In contrast to r and m themselves, the ratio r/m is independent of

time and should be robust. This ratio has a mean value of 0.18,

very similar to the estimate of 0.19 for the serial isolates (Table 4).

Similarly, the tract length l and the frequency n at which

polymorphisms were introduced are also independent of time, and

were only slightly higher in the family data than in the serial isolate

data (Table 4). n remains lower than the average pair-wise distance

between two random strains of H. pylori and l is consistent with

recent estimates of tract lengths introduced by recombination in

the laboratory [41,42]. Finally, the relative effect of recombination

and mutation, r ? l ? n/m, should also be relatively robust in regard

to uncertainties about time of separation. The mean value of 5.5

was 50% higher than for the serial isolates (3.4), possibly reflecting

more opportunities for recombination over the longer time period

of infection in the families than within the serial isolates.

Mutation rates in H. pylori versus other bacteria
The estimated short-term mutation rates in the serial and family

isolates were 1.461026 and 4.561026, respectively. This range is a

robust estimate of the mutation rate over years to decades. It is also

possible to calculate a longer term mutation rate for genetic diversity

between H. pylori from different global sources, because isolation by

distance over the last 60,000 years has resulted in parallel trends in

changes in genetic diversity between these bacteria and their human

hosts [30]. As a result, diversity between H. pylori from different

global sources has accumulated in a clock-like manner that

correlates with, and can be dated by, the times of separation of

their human hosts [29]. We estimated the long-term mutation rate

on the basis of the ClonalFrame analyses described by Moodley et al.

[29], yielding a long-term estimate for m of 2.661027 (Table 2).

This value is 5–17 fold lower than the short-term rates calculated

here, which is probably a general phenomenon among bacteria

according to theoretical considerations [14,15]. One reason for such

discrepancies is that even neutral polymorphisms are usually lost

over time through genetic drift. A second reason is that non-

synonymous mutations will be selected against with time because

many of them are slightly deleterious, which should result in a lower

dN/dS ratio, the relative rates of non-synonymous to synonymous

mutations. A loss of non-synonymous mutations will reduce the

apparent mutation rate because approximately 75% of all mutations

in coding genes are non-synonymous.

We estimated what proportion of the 5–17 fold reduction in the

long-term mutation rate could be accounted for by the loss of non-

synonymous mutations. Based on our simulations with the serial

isolates, approximately 99% of paired fragments with only one

polymorphism resulted from mutation rather than recombination.

Thus we could equate the polymorphisms within fragments

containing only one SNP to mutations, allowing the calculation of

dN/dS even when other fragments had undergone recombination.

The resulting dN/dS ratio was 0.5, which indicates that only little

purifying selection had taken place over the time period considered

here, as is also the case in other examples of recent microevolution

[2,22]. Over longer time periods, purifying selection of deleterious

non-synonymous mutations does take place in H. pylori, resulting in

an average dN/dS ratio of 0.07 (sevenfold lower) in housekeeping

genes among unrelated isolates [34], which is in good agreement

with the 5–17 fold difference in mutation rates.

Finally, we return to the general question of the short-term clock

rate within bacteria. The results presented here demonstrate that

the short-term clock rate in H. pylori is approximately the same

(0.4–1.4 fold) as the short-term clock rate in S. aureus ST239, 6.2–

20.5 times the rate in Buchnera and 158–524 times the rate in Y.

pestis (Table 2). These comparisons show that the short-term clock

rate varies dramatically among different bacteria, and in some

cases overlaps with those of RNA viruses [60]. However, in all

cases considered here, it is higher than the long-term (synonymous)

clock rate of 3.461029 that has often been used until now to

calculate the ages of genetically monomorphic bacteria.

Materials and Methods

Bacterial isolates
We studied two types of bacterial isolates of H. pylori: serial

isolates which were collected from individual persons after a

specified time interval, and family isolates which were collected

concurrently from two or more members of the same family (Table

S2). The 68 serial isolates were collected from 34 patients at

intervals ranging from 3 months to 10.2 years. The 29 family

isolates were collected from 2 to 5 members of 10 families.

Nucleotide sequencing
Fragments of 78 genes were sequenced (Table S1). Additional

extended flanking regions were also sequenced when sequence

polymorphisms were detected in the standard fragments. PCR

products were amplified and sequences were performed by standard

Sanger sequencing on an ABI 3730 XL as described [47] using the

oligonucleotide primers listed in Table S3, except that PCR

Mutation and Recombination Rates in H. pylori
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products were cleaned by using shrimp alkaline phosphatase plus

exonuclease I. All sequence data has been deposited in the

Helicobacter pylori Multi Locus Sequence Typing website (http://

pubmlst.org/helicobacter/projects/microevolution/alldata.zip) de-

veloped by Keith Jolley and sited at the University of Oxford [61].

Microevolutionary model
We designed a microevolutionary model which describes the

evolution of the genome of a strain over a certain period of time T.

During this time, each nucleotide of the genome is mutated with

probability T6m and is the initiation site of a recombination with

probability T6r. When a recombination occurs, it affects a segment

of the genome starting from the initiation site and stretching to the

right over a length which is geometrically distributed with mean l.

Each site of the affected segment has a probability to be substituted

which is normally distributed with mean n.

The parameters of this microevolutionary model are the time T

separating each compared pair of isolates, the mutation rate m per

site per year, the recombination rate r per initiation site per year,

the average tract length of recombination l and the average rate

of polymorphism introduced by recombination n. The prior for

the time of divergence between the paired isolates is described

below. Priors for the four other parameters were uniform from 0 to

infinity (improper prior).

Prior on the evolutionary time separating pairs of isolates
Because the evolutionary time separating pairs of isolates is

unknown, we had to assume a prior for this quantity in order to

perform Bayesian inference. For the serial isolates, we know that

the time spent between successive isolations represents a lower

bound. If we further assume that the two isolates originated from

the same infection, and since this infection must have happened

after the birth of the patient, we get an upper bound equal to twice

the age of the infected person. We thus assumed a uniform prior

for the evolutionary time separating serial isolates between these

lower and upper bounds.

For the evolutionary time separating a pair of family isolates, we

took a lower bound equal to the minimum of the ages of the two

family members minus 20, based on the idea that H. pylori infection

usually occurs before the age of 20. We took an upper bound equal

to the sum of the ages of the two family members. We assumed a

uniform prior for the evolutionary time separating pairs of family

isolates between these lower and upper bounds.

Approximate Bayesian Computation analysis
We performed inference under the model above using the

Approximate Bayesian Computation (ABC) algorithm described

by Marjoram et al. [56]. This algorithm was run independently for

the serial isolates and the family isolates. The length of each run

was set at 100,000 iterations, which took approximately 5 hours

on a Desktop computer. Several independent runs were performed

and compared manually in order to ensure that good convergence

and mixing properties were achieved.

One essential step in ABC analysis is the choice of the summary

statistics used, which determines how exact the inference is [52]. If

the whole data were used as a summary, the algorithm would be

exact but unfeasibly slow. If no summary statistic were used at all,

the Markov chain would explore the prior on the parameters. It is

thus important to find a handful of statistics that summarize the

information contained in the data about the parameters as well as

possible. Here we found that the data was well summarized by the

numbers of gene fragments with zero, one, two or at least three

substitutions, and the average spread of substitutions for the

fragments with at least 3 substitutions. The rationale behind this

choice is that fragments with one substitution are likely to be

caused by mutation whereas fragments with at least 3 substitutions

are likely to be caused by recombination. Therefore, even though

our model makes no assumption about the cause of observed

polymorphisms, the number of fragments with one substitution is

informative about the mutation rate m and the number of

fragments with at least 3 substitutions is informative about the

recombination rate r. Furthermore, the average spread of

substitutions for the fragments with at least 3 substitutions is

informative about the average tract length of recombination l.

We note that this model determines mutation and recombina-

tion by a phylogenetic approach, which implicitly assumes that

each mutation is fixed rather than resulting in a polymorphism.

This approach allows comparisons with the other mutation rates

in Table 2, which were also calculated by a phylogenetic

approach, except C. jejuni. However, as pointed out by one of

the reviewers, Joshua B. Plotkin, the sequence differences we have

analyzed correspond to segregating polymorphisms, which might

have implications for our estimated mutation rates [16,17,62].

Supporting Information

Figure S1 As in Figure 3, except that pair-wise comparisons

between isolates from families 23 and 26 were not included in

(C,D).

Found at: doi:10.1371/journal.pgen.1001036.s001 (0.16 MB PDF)

Figure S2 Comparisons of data and simulations from family

isolates. All other details are as in Figure 5.

Found at: doi:10.1371/journal.pgen.1001036.s002 (0.27 MB PDF)

Table S1 78 gene fragments whose sequences were compared

between paired isolates and within isolates from families.

Found at: doi:10.1371/journal.pgen.1001036.s003 (0.04 MB

XLS)

Table S2 (A) Paired serial isolates from 34 individuals. (B) Single

isolates from 29 individuals in 10 families.

Found at: doi:10.1371/journal.pgen.1001036.s004 (0.03 MB

XLS)

Table S3 Sequences of oligonucleotide primers used for

amplification and sequencing.

Found at: doi:10.1371/journal.pgen.1001036.s005 (0.09 MB

XLS)

Table S4 Polymorphic sites in 78 gene fragments from genomic

sequences and from the paired isolates.

Found at: doi:10.1371/journal.pgen.1001036.s006 (0.06 MB

XLS)
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