48 research outputs found

    First results from the HENSA/ANAIS collaboration at the Canfranc Underground Laboratory

    Get PDF
    The HENSA/ANAIS collaboration aims for the precise determination of the neutron flux that could affect ANAIS-112, an experiment looking for the dark matter annual modulation using NaI(Tl) scintillators. In this work, the first measurements of the neutron flux and Monte Carlo simulations of the neutron spectrum are reported

    Six-year follow-up of slaughterhouse surveillance (2008-2013): the Catalan Slaughterhouse Support Network (SESC)

    Get PDF
    Meat inspection has the ultimate objective of declaring the meat and offal obtained from carcasses of slaughtered animals fit or unfit for human consumption. This safeguards the health of consumers by ensuring that the food coming from these establishments poses no risk to public health. Concomitantly, it contributes to animal disease surveillance. The Catalan Public Health Protection Agency (Generalitat de Catalunya) identified the need to provide its meat inspectors with a support structure to improve diagnostic capacity: the Slaughterhouse Support Network (SESC). The main goal of the SESC was to offer continuing education to meat inspectors to improve the diagnostic capacity for lesions observed in slaughterhouses. With this aim, a web-based application was designed that allowed meat inspectors to submit their inquiries, images of the lesions, and samples for laboratory analysis. This commentary reviews the cases from the first 6 years of SESC operation (2008–2013). The program not only provides continuing education to inspectors but also contributes to the collection of useful information on animal health and welfare. Therefore, SESC complements animal disease surveillance programs, such as those for tuberculosis, bovine cysticercosis, and porcine trichinellosis, and is a powerful tool for early detection of emerging animal diseases and zoonoses

    GWAS for Systemic Sclerosis Identifies Multiple Risk Loci and Highlights Fibrotic and Vasculopathy Pathways

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.Funding: This work was supported by Spanish Ministry of Economy and Competitiveness (grant ref. SAF2015-66761-P), Consejeria de Innovacion, Ciencia y Tecnologia, Junta de Andalucía (P12-BIO-1395), Ministerio de Educación, Cultura y Deporte through the program FPU, Juan de la Cierva fellowship (FJCI-2015-24028), Red de Investigación en Inflamación y Enfermadades Reumaticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013), and Scleroderma Research Foundation and NIH P50-HG007735 (to H.Y.C.). H.Y.C. is an Investigator of the Howard Hughes Medical Institute. PopGen 2.0 is supported by a grant from the German Ministry for Education and Research (01EY1103). M.D.M and S.A. are supported by grant DoD W81XWH-18-1-0423 and DoD W81XWH-16-1-0296, respectively

    COPPADIS-2015 (COhort of Patients with PArkinson's DIsease in Spain, 2015), a global--clinical evaluations, serum biomarkers, genetic studies and neuroimaging--prospective, multicenter, non-interventional, long-term study on Parkinson's disease progressio

    Get PDF
    Background: Parkinson?s disease (PD) is a progressive neurodegenerative disorder causing motor and non-motor symptoms that can affect independence, social adjustment and the quality of life (QoL) of both patients and caregivers. Studies designed to find diagnostic and/or progression biomarkers of PD are needed. We describe here the study protocol of COPPADIS-2015 (COhort of Patients with PArkinson?s DIsease in Spain, 2015), an integral PD project based on four aspects/concepts: 1) PD as a global disease (motor and non-motor symptoms); 2) QoL and caregiver issues; 3) Biomarkers; 4) Disease progression.Methods/design: Observational, descriptive, non-interventional, 5-year follow-up, national (Spain), multicenter (45 centers from 15 autonomous communities), evaluation study. Specific goals: (1) detailed study (clinical evaluations, serum biomarkers, genetic studies and neuroimaging) of a population of PD patients from different areas of Spain, (2) comparison with a control group and (3) follow-up for 5 years. COPPADIS-2015 has been specifically designed to assess 17 proposed objectives. Study population: approximately 800 non-dementia PD patients, 600 principal caregivers and 400 control subjects. Study evaluations: (1) baseline includes motor assessment (e.g., Unified Parkinson?s Disease Rating Scale part III), non-motor symptoms (e.g., Non-Motor Symptoms Scale), cognition (e.g., Parkinson?s Disease Cognitive Rating Scale), mood and neuropsychiatric symptoms (e.g., Neuropsychiatric Inventory), disability, QoL (e.g., 39-item Parkinson?s disease Quality of Life Questionnaire Summary-Index) and caregiver status (e.g., Zarit Caregiver Burden Inventory); (2) follow-up includes annual (patients) or biannual (caregivers and controls) evaluations. Serum biomarkers (S-100b protein, TNF-?, IL-1, IL-2, IL-6, vitamin B12, methylmalonic acid, homocysteine, uric acid, C-reactive protein, ferritin, iron) and brain MRI (volumetry, tractography and MTAi [Medial Temporal Atrophy Index]), at baseline and at the end of follow-up, and genetic studies (DNA and RNA) at baseline will be performed in a subgroup of subjects (300 PD patients and 100 control subjects). Study periods: (1) recruitment period, from November, 2015 to February, 2017 (basal assessment); (2) follow-up period, 5 years; (3) closing date of clinical follow-up, May, 2022. Funding: Public/Private. Discussion: COPPADIS-2015 is a challenging initiative. This project will provide important information on the natural history of PD and the value of various biomarkers

    Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets

    Get PDF
    Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies

    Identification of sixteen novel candidate genes for late onset Parkinson’s disease

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment

    Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease

    Get PDF
    IMPORTANCE: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of genetic Parkinson disease (PD) known to date. The clinical features of manifesting LRRK2 mutation carriers are generally indistinguishable from those of patients with sporadic PD. However, some PD cases associated with LRRK2 mutations lack Lewy bodies (LBs), a neuropathological hallmark of PD. We investigated whether the presence or absence of LBs correlates with different clinical features in LRRK2-related PD. OBSERVATIONS: We describe genetic, clinical, and neuropathological findings of 37 cases of LRRK2-related PD including 33 published and 4 unpublished cases through October 2013. Among the different mutations, the LRRK2 p.G2019S mutation was most frequently associated with LB pathology. Nonmotor features of cognitive impairment/dementia, anxiety, and orthostatic hypotension were correlated with the presence of LBs. In contrast, a primarily motor phenotype was associated with a lack of LBs. CONCLUSIONS AND RELEVANCE: To our knowledge, this is the first report of clinicopathological correlations in a series of LRRK2-related PD cases. Findings from this selected group of patients with PD demonstrated that parkinsonian motor features can occur in the absence of LBs. However, LB pathology in LRRK2-related PD may be a marker for a broader parkinsonian symptom complex including cognitive impairment

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
    corecore