61 research outputs found

    Novel insights into guide RNA 5ʹ-Nucleoside/Tide binding by human argonaute 2

    Get PDF
    The human Argonaute 2 (hAgo2) protein is a key player of RNA interference (RNAi). Upon complex formation with small non-coding RNAs, the protein initially interacts with the 51-end of a given guide RNA through multiple interactions within the MID domain. This interaction has been reported to show a strong bias for U and A over C and G at the 5ʹ-position. Performing molecular dynamics simulations of binary hAgo2/OH–guide–RNA complexes, we show that hAgo2 is a highly flexible protein capable of binding to guide strands with all four possible 51-bases. Especially, in the case of C and G this is associated with rather large individual conformational rearrangements affecting the MID, PAZ and even the N-terminal domains to different degrees. Moreover, a 5ʹ-G induces domain motions in the protein, which trigger a previously unreported interaction between the 51-base and the L2 linker domain. Combining our in silico analyses with biochemical studies of recombinant hAgo2, we find that, contrary to previous observations, hAgo2 is capable of functionally accommodating guide strands regardless of the 5ʹ-base

    RNAi revised - Target mRNA-dependent enhancement of gene silencing

    Get PDF
    The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with highmultiple turnover rates of RNAibased gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery

    Specific binding of a hexanucleotide to HIV-1 reverse transcriptase: a novel class of bioactive molecules

    Get PDF
    Short oligonucleotides below 8–10 nt in length adopt relatively simple structures. Accordingly, they represent interesting and so far unexplored lead compounds as molecular tools and, potentially, for drug development as a rational improvement of efficacy seem to be less complex than for other classes of longer oligomeric nucleic acid. As a ‘proof of concept’, we describe the highly specific binding of the hexanucleotide UCGUGU (Hex-S3) to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) as a model target. Ultraviolet (UV) cross-linking studies and competition experiments with primer/template substrates and a RT-directed aptamer suggest site-specific binding of Hex-S3 to the large subunit (p66) of the viral enzyme. The affinity of 5.3 μM is related to hexanucleotide-specific suppression of HIV-1 replication in human cells by up to three orders of magnitude indicating that Hex-S3 exerts specific and biologically relevant activity. Experimental evidence described here further suggests a systematic hexamer array-based search for new tools for molecular biology and novel lead compounds in nucleic acid-based drug development

    Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect

    Get PDF
    Cell-penetrating peptides (CPPs) have evolved as promising new tools to deliver nucleic acids into cells. So far, the majority of these delivery systems require a covalent linkage between carrier and cargo. To exploit the higher flexibility of a non-covalent strategy, we focused on the characterisation of a novel carrier peptide termed MPGα, which spontaneously forms complexes with nucleic acids. Using a luciferase-targeted small interfering RNA (siRNA) as cargo, we optimised the conditions for MPGα-mediated transfection of mammalian cells. In this system, reporter gene activity could be inhibited up to 90% with an IC(50) value in the sub-nanomolar range. As a key issue, we addressed the cellular uptake mechanism of MPGα/siRNA complexes applying various approaches. First, transfection of HeLa cells with MPGα/siRNA complexes in the presence of several inhibitors of endocytosis showed a significant reduction of the RNA interference (RNAi) effect. Second, confocal laser microscopy revealed a punctual intracellular pattern rather than a diffuse distribution of fluorescently labelled RNA-cargo. These data provide strong evidence of an endocytotic pathway contributing significantly to the uptake of MPGα/siRNA complexes. Finally, we quantified the intracellular number of siRNA molecules after MPGα-mediated transfection. The amount of siRNA required to induce half maximal RNAi was 10 000 molecules per cell. Together, the combination of methods provided allows for a detailed side by side quantitative analysis of cargo internalisation and related biological effects. Thus, the overall efficiency of a given delivery technique as well as the mechanism of uptake can be assessed

    HIV-1 Protease and Reverse Transcriptase Control the Architecture of Their Nucleocapsid Partner

    Get PDF
    The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication

    Recent Developments in Peptide-Based Nucleic Acid Delivery

    Get PDF
    Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls

    Conformational Dynamics of Ago-Mediated Silencing Processes

    No full text
    Argonaute (Ago) proteins are key players of nucleic acid-based interference mechanisms. Their domains and structural organization are widely conserved in all three domains of life. However, different Ago proteins display various substrate preferences. While some Ago proteins are able to use several substrates, others are limited to a single one. Thereby, they were demonstrated to act specifically on their preferred substrates. Here, we discuss mechanisms of Ago-mediated silencing in relation to structural and biochemical insights. The combination of biochemical and structural information enables detailed analyses of the complex dynamic interplay between Ago proteins and their substrates. Especially, transient binding data allow precise investigations of structural transitions taking place upon Ago-mediated guide and target binding
    corecore