13 research outputs found

    Epithelial p38α Controls Immune Cell Recruitment in the Colonic Mucosa

    Get PDF
    Intestinal epithelial cells (IECs) compose the first barrier against microorganisms in the gastrointestinal tract. Although the NF-κB pathway in IECs was recently shown to be essential for epithelial integrity and intestinal immune homeostasis, the roles of other inflammatory signaling pathways in immune responses in IECs are still largely unknown. Here we show that p38α in IECs is critical for chemokine expression, subsequent immune cell recruitment into the intestinal mucosa, and clearance of the infected pathogen. Mice with p38α deletion in IECs suffer from a sustained bacterial burden after inoculation with Citrobacter rodentium. These animals are normal in epithelial integrity and immune cell function, but fail to recruit CD4+ T cells into colonic mucosal lesions. The expression of chemokines in IECs is impaired, which appears to be responsible for the impaired T cell recruitment. Thus, p38α in IECs contributes to the host immune responses against enteric bacteria by the recruitment of immune cells

    Access to long-lived room temperature phosphorescence through auration of 2,1,3-benzothiadiazole

    No full text
    A series of 2,1,3-benzothiadiazole–Au(I)–L complexes have been synthesised, structurally characterised and investigated for their photophysical properties. These are the first organometallic Au(I) complexes containing a C–Au bond on the highly electron-deficient benzothiadiazole unit. The complexes exhibit solution-phase phosphorescence at room temperature, assigned to the intrinsic triplet state of the benzothiadiazole unit that is efficently populated through its attachment to gold. Comparison with routinely reported Au(I) complexes, which include intervening alkenyl linkers, suggests that previous assignments of their phosphorescence as 1π → π*(CCR) might be incomplete. Our observations affirm that, in addition to the heavy atom effect, breaking symmetry in the involved aryl motif may be of importance in controlling the luminescence properties.De två första författarna delar förstaförfattarskapet</p
    corecore