12 research outputs found

    Fine structure of the low-frequency spectra of heart rate and blood pressure

    Get PDF
    BACKGROUND: The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. RESULTS: Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. CONCLUSION: The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain

    Cost-effectiveness analysis of guidelines for antihypertensive care in Finland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertension is one of the major causes of disease burden affecting the Finnish population. Over the last decade, evidence-based care has emerged to complement other approaches to antihypertensive care, often without health economic assessment of its costs and effects. This study looks at the extent to which changes proposed by the 2002 Finnish evidence-based Current Care Guidelines concerning the prevention, diagnosis, and treatment of hypertension (the ACCG scenario) can be considered cost-effective when compared to modelled prior clinical practice (the PCP scenario).</p> <p>Methods</p> <p>A decision analytic model compares the ACCG and PCP scenarios using information synthesised from a set of national registers covering prescription drug reimbursements, morbidity, and mortality with data from two national surveys concerning health and functional capacity. Statistical methods are used to estimate model parameters from Finnish data. We model the potential impact of the different treatment strategies under the ACCG and PCP scenarios, such as lifestyle counselling and drug therapy, for subgroups stratified by age, gender, and blood pressure. The model provides estimates of the differences in major health-related outcomes in the form of life-years and costs as calculated from a 'public health care system' perspective. Cost-effectiveness analysis results are presented for subgroups and for the target population as a whole.</p> <p>Results</p> <p>The impact of the use of the ACCG scenario in subgroups (aged 40–80) without concomitant cardiovascular and related diseases is mainly positive. Generally, costs and life-years decrease in unison in the lowest blood pressure group, while in the highest blood pressure group costs and life-years increase together and in the other groups the ACCG scenario is less expensive and produces more life-years. When the costs and effects for subgroups are combined using standard decision analytic aggregation methods, the ACCG scenario is cost-saving and more effective.</p> <p>Conclusion</p> <p>The ACCG scenario is likely to reduce costs and increase life-years compared to the PCP scenario in many subgroups. If the estimated trade-offs between the subgroups in terms of outcomes and costs are acceptable to decision-makers, then widespread implementation of the ACCG scenario is expected to reduce overall costs and be accompanied by positive outcomes overall.</p

    A molecular-based identification resource for the arthropods of Finland

    Get PDF
    Publisher Copyright: © 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.Peer reviewe
    corecore