59 research outputs found
Heroesx: The Ancient Greek Hero: Spring 2013 Course Report
CB22x: The Ancient Greek Hero, was offered as a HarvardX course in Spring 2013 on edX, a platform for massive open online courses (MOOCs). It was taught by Professor Greg Nagy. The report was prepared by researchers external to the course team, based on examination of the courseware, analyses of the data collected by the edX platform, and interviews and consultations with the course faculty and team members
Novel Calicivirus Identified in Rabbits, Michigan, USA
This virus is distinct from rabbit hemorrhagic disease virus
Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: 2. Measurement of shape
Optical fibre strain and shape measurement sensors were deployed on a rotor blade during a full-speed helicopter ground run, with real-time data wirelessly streamed from rotor hub-mounted sensor interrogators. In part 2 of a 2-part paper series, two-dimensional direct fibre-optic shape sensing (DFOSS), using fibre segment interferometry-based interrogation is investigated. The concept of blade shape change visualisation over one rotation period using rotation displacement surfaces is introduced and the usefulness of DFOSS data to gain additional insights by determining operational modal frequencies independently for both horizontal and vertical vibration directions of the blade is demonstrated
GOODS-Herschel: star formation, dust attenuation, and the FIR-radio correlation on the main sequence of star-forming galaxies up to z=4
We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z sime 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M* correlation is consistent with being constant sime0.8 up to z sime 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z sime 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z sime 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts
Researching underwater: a submerged study
This chapter explores the unknown territory of a lost project: an ethnography of a public swimming pool. The discussion is contextualised within my broader sociological theory of ‘nothing’, as a category of unmarked, negative social phenomena, including no-things, no-bodies, no-wheres, non-events and non-identities. These meaningful symbolic objects are constituted through social interaction, which can take two forms: acts of commission and acts of omission. I tell the story of how this project did not happen, through the things I did not do or that did not materialise, and how I consequently did not become a certain type of researcher. I identify three types of negative phenomena that I did not observe and document – invisible figures, silent voices and empty vessels – and, consequently, the knowledge I did not acquire. However, nothing is also productive, generating new symbolic objects as substitutes, alternatives and replacements: the somethings, somebodies and somewheres that are done or made instead. Thus finally, I reflect on how not doing this project led me to pursue others, cultivating a different research identity that would not otherwise have existed
The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies
We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size Re, on the ratio v/\u3c3 between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j 17of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z 3c 1-2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan future multiband, high-resolution observations on high-redshift star-forming and quiescent galaxies with next-generation facilities
Increasing capacity for the treatment of common musculoskeletal problems: A non-inferiority RCT and economic analysis of corticosteroid injection for shoulder pain comparing a physiotherapist and orthopaedic surgeon
Background Role substitution is a strategy employed to assist health services manage the growing demand for musculoskeletal care. Corticosteroid injection is a common treatment in this population but the efficacy of its prescription and delivery by physiotherapists has not been established against orthopaedic standards. This paper investigates whether corticosteroid injection given by a physiotherapist for shoulder pain is as clinically and cost effective as that from an orthopaedic surgeon. Methods A double blind non-inferiority randomized controlled trial was conducted in an Australian public hospital orthopaedic outpatient service, from January 2013 to June 2014. Adults with a General Practitioner referral to Orthopaedics for shoulder pain received subacromial corticosteroid and local anaesthetic injection prescribed and delivered independently by a physiotherapist or a consultant orthopaedic surgeon. The main outcome measure was total Shoulder Pain and Disability Index (SPADI) score at baseline, six and 12 weeks, applying a non-inferiority margin of 15 points. Secondary outcomes tested for superiority included pain, shoulder movement, perceived improvement, adverse events, satisfaction, quality of life and costs. Results 278 participants were independently assessed by the physiotherapist and the orthopaedic surgeon, with 64 randomised (physiotherapist 33, orthopaedic surgeon 31). There were no significant differences in baseline characteristics between groups. Non-inferiority of injection by the physiotherapist was declared from total SPADI scores at 6 and 12 weeks (upper limit of the 95% one-sided confidence interval 13.34 and 7.17 at 6 and 12 weeks, respectively). There were no statistically significant differences between groups on any outcome measures at 6 or 12 weeks. From the perspective of the health funder, the physiotherapist was less expensive. Conclusions Corticosteroid injection for shoulder pain, provided by a suitably qualified physiotherapist is at least as clinically effective, and less expensive, compared with similar care delivered by an orthopaedic surgeon. Policy makers and service providers should consider implementing this model of care
Rapidly growing black holes and host galaxies in the distant universe from the Herschel Radio Galaxy Evolution Project
We present results from a comprehensive survey of 70 radio galaxies at redshifts 1 2.5 are higher than the sSFR of typical star forming galaxies over the same redshift range, but are similar or perhaps lower than the galaxy population for radio galaxies at z< 2.5. By comparing the sSFR and the specific ṀBH (sṀBH), we conclude that black holes in radio loud AGN are already, or soon will be, overly massive compared to their host galaxies in terms of expectations from the local MBH–MGal relation. In order to catch up with the black hole, the galaxies require about an order of magnitude more time to grow in mass at the observed SFRs compared to the time the black hole is actively accreting. However, during the current cycle of activity, we argue that this catching up is likely to be difficult because of the short gas depletion times. Finally, we speculate on how the host galaxies might grow sufficiently in stellar mass to ultimately fall onto the local MBH–MGal relation
Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study.
BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London
- …