1,399 research outputs found

    The influence of tropospheric biennial oscillation on mid-tropospheric CO_2

    Get PDF
    Mid-tropospheric CO_2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO_2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO_2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO_2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO_2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO_2 is to be smaller than that in the AIRS observations

    Influence of El Niño on Midtropospheric CO_2 from Atmospheric Infrared Sounder and Model

    Get PDF
    The authors investigate the influence of El Niño on midtropospheric CO_2 from the Atmospheric Infrared Sounder (AIRS) and the Model for Ozone and Related Chemical Tracers, version 2 (MOZART-2). AIRS midtropospheric CO_2 data are used to study the temporal and spatial variability of CO_2 in response to El Niño. CO_2 differences between the central and western Pacific Ocean correlate well with the Southern Oscillation index. To reveal the temporal and spatial variability of the El Niño signal in the AIRS midtropospheric CO_2, a multiple regression method is applied to the CO_2 data from September 2002 to February 2011. There is more (less) midtropospheric CO_2 in the central Pacific and less (more) midtropospheric CO_2 in the western Pacific during El Niño (La Niña) events. Similar results are seen in the MOZART-2 convolved midtropospheric CO_2, although the El Niño signal in the MOZART-2 is weaker than that in the AIRS data

    Simulating Ionising Radiation in Gazebo for Robotic Nuclear Inspection Challenges

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-02, pub-electronic 2021-07-07Publication status: PublishedFunder: UK Research and Innovation; Grant(s): EP/P018505/1, EP/R026084/1Funder: Royal Academy of Engineering; Grant(s): CiET1819\13The utilisation of robots in hazardous nuclear environments has potential to reduce risk to humans. However, historical use has been largely limited to specific missions rather than broader industry-wide adoption. Testing and verification of robotics in realistic scenarios is key to gaining stakeholder confidence but hindered by limited access to facilities that contain radioactive materials. Simulations offer an alternative to testing with actual radioactive sources, provided they can readily describe the behaviour of robotic systems and ionising radiation within the same environment. This work presents a quick and easy way to generate simulated but realistic deployment scenarios and environments which include ionising radiation, developed to work within the popular robot operating system compatible Gazebo physics simulator. Generated environments can be evolved over time, randomly or user-defined, to simulate the effects of degradation, corrosion or to alter features of certain objects. Interaction of gamma radiation sources within the environment, as well as the response of simulated detectors attached to mobile robots, is verified against the MCNP6 Monte Carlo radiation transport code. The benefits these tools provide are highlighted by inclusion of three real-world nuclear sector environments, providing the robotics community with opportunities to assess the capabilities of robotic systems and autonomous functionalities

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    The Belle II SVD detector

    Get PDF
    The Silicon Vertex Detector (SVD) is one of the main detectors in the Belle II experiment at KEK, Japan. In combination with a pixel detector, the SVD determines precise decay vertex and low-momentum track reconstruction. The SVD ladders are being developed at several institutes. For the development of the tracking algorithm as well as the performance estimation of the ladders, beam tests for the ladders were performed. We report an overview of the SVD development, its performance measured in the beam test, and the prospect of its assembly and commissioning until installation

    Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Get PDF
    The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP) of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1). However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin) Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER), Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP), it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Establishment of Fruit Bat Cells (Rousettus aegyptiacus) as a Model System for the Investigation of Filoviral Infection

    Get PDF
    Marburg virus and several species of Ebola virus are endemic in central Africa and cause sporadic outbreaks in this region with mortality rates of up to 90%. So far, there is no vaccination or therapy available to protect people at risk in these regions. Recently, different fruit bats have been identified as potential reservoirs. One of them is Rousettus aegyptiacus. It seems that within huge bat populations only relatively small numbers are positive for filovirus-specific antibodies or filoviral RNA, a phenomenon that is currently not understood. As a first step towards understanding the biology of filoviruses in bats, we sought to establish a model system to investigate filovirus replication in cells derived from their natural reservoir. Here, we provide the first insights into this topic by monitoring filovirus infection of a Rousettus aegyptiacus derived cell line, R06E. We were able to show that filoviruses propagate well in R06E cells, which can, therefore, be used to investigate replication and transcription of filovirus RNA and to very efficiently perform rescue of recombinant Marburg virus using reverse genetics. These results emphasize the suitability of the newly established bat cell line for filovirus research

    Tools and data services registry: a community effort to document bioinformatics resources

    Get PDF
    Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand. Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners. As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools
    • 

    corecore