179 research outputs found

    PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The large serine recombinase phiC31 from broad host range <it>Streptomyces </it>temperate phage, catalyzes the site-specific recombination of two recognition sites that differ in sequence, typically known as attachment sites <it>attB </it>and <it>attP</it>. Previously, we characterized the phiC31 catalytic activity and modes of action in the fission yeast <it>Schizosaccharomyces pombe</it>.</p> <p>Results</p> <p>In this work, the <it>phiC31 </it>recombinase gene was placed under the control of the <it>Arabidopsis OXS3 </it>promoter and introduced into <it>Arabidopsis </it>harboring a chromosomally integrated <it>attB </it>and <it>attP</it>-flanked target sequence. The phiC31 recombinase excised the <it>attB </it>and <it>attP</it>-flanked DNA, and the excision event was detected in subsequent generations in the absence of the <it>phiC31 </it>gene, indicating germinal transmission was possible. We further verified that the genomic excision was conservative and that introduction of a functional recombinase can be achieved through secondary transformation as well as manual crossing.</p> <p>Conclusion</p> <p>The phiC31 system performs site-specific recombination in germinal tissue, a prerequisite for generating stable lines with unwanted DNA removed. The precise site-specific deletion by phiC31 <it>in planta </it>demonstrates that the recombinase can be used to remove selectable markers or other introduced transgenes that are no longer desired and therefore can be a useful tool for genome engineering in plants.</p

    Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in <it>Arabidopsis</it>.</p> <p>Results</p> <p>DIR1 promoter:DIR1-GUS/<it>dir1-1 </it>lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent <it>Pseudomonas syringae </it>pv <it>tomato </it>(<it>Pst</it>) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the <it>dir1-1 </it>SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response.</p> <p>Conclusions</p> <p>Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR.</p

    Novel sulI binary vectors enable an inexpensive foliar selection method in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sulfonamide resistance is conferred by the <it>sul</it>I gene found on many <it>Enterobacteriaceae </it>R plasmids and Tn21 type transposons. The <it>sul</it>I gene encodes a sulfonamide insensitive dihydropteroate synthase enzyme required for folate biosynthesis. Transformation of tobacco, potato or <it>Arabidopsis </it>using <it>sul</it>I as a selectable marker generates sulfadiazine-resistant plants. Typically <it>sul</it>I-based selection of transgenic plants is performed on tissue culture media under sterile conditions.</p> <p>Findings</p> <p>A set of novel binary vectors containing a <it>sul</it>I selectable marker expression cassette were constructed and used to generate transgenic <it>Arabidopsis</it>. We demonstrate that the <it>sul</it>I selectable marker can be utilized for direct selection of plants grown in soil with a simple foliar spray application procedure. A highly effective and inexpensive high throughput screening strategy to identify transgenic <it>Arabidopsis </it>without use of tissue culture was developed.</p> <p>Conclusion</p> <p>Novel <it>sul</it>I-containing <it>Agrobacterium </it>binary vectors designed to over-express a gene of interest or to characterize a test promoter in transgenic plants have been constructed. These new vector tools combined with the various beneficial attributes of sulfonamide selection and the simple foliar screening strategy provide an advantageous alternative for plant biotechnology researchers. The set of binary vectors is freely available upon request.</p

    The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction

    Get PDF
    Recently, the octameric vesicle-tethering complex exocyst was found in plants and its importance for Arabidopsis morphogenesis was demonstrated. Exo70 exocyst subunits in plants, unlike in yeasts and mammals, are represented by a multigene family, comprising 23 members in Arabidopsis. For Exo70B2 and Exo70H1 paralogues, transcriptional up-regulation was confirmed on treatment with an elicitor peptide, elf18, derived from the bacterial elongation factor. Their ability to participate in the exocyst complex formation was inferred by the interaction of both the Exo70s with several other exocyst subunits using the yeast two-hybrid system. Arabidopsis plants mutated in these two genes were used to analyse their local reaction upon inoculation with Pseudomonas syringae pv. maculicola and the fungal pathogen Blumeria graminis f. sp. hordei. The Pseudomonas sensitivity test revealed enhanced susceptibility for the two exo70B2 and one H1 mutant lines. After Blumeria inoculation, an increase in the proportion of abnormal papilla formation, with an unusual wide halo made of vesicle-like structures, was found in exo70B2 mutants. Intracellular localization of both Exo70 proteins was studied following a GFP fusion assay and Agrobacterium-mediated transient expression of the constructs in Nicotiana benthamiana leaf epidermis. GFP-Exo70H1 localizes in the vesicle-like structures, while GFP-Exo70B2 is localized mainly in the cytoplasm. It is concluded that both Exo70B2 and Exo70H1 are involved in the response to pathogens, with Exo70B2 having a more important role in cell wall apposition formation related to plant defence
    corecore