16 research outputs found

    Barriers to adoption of biogenic carbonates in the food, pharmaceutical & supplement sectors

    Get PDF
    There is an increasing demand for environmentally sustainable sourcing of ingredients for the food, pharmaceutical and supplements industries. In the case of calcium carbonate (E170) as by-products from the egg and shellfish processing industries these have the potential to be sustainably sourced. In addition to their green credentials, biogenic carbonates have intrinsic benefits in terms of their chemical composition, such as a low heavy metal burden. However, their biogenic origin can potentially lead to manufacturing issues such as higher levels of co-mineralising components and the organic templates of their natural production. This contribution identifies the regulatory barriers to the adoption of biogenic eggshell calcium carbonate by assessing materials from biological sources along with commercial precipitated and ground carbonates against current regulatory standards

    Valsartan (Profiles of Drugs Substances, Excipients and Related Methodology)

    Get PDF
    Valsartan is an antihypertensive drug which selectively inhibits angiotensin receptor type II. This tetrazole derivative was first developed by Novartis and marketed under brand name Diovan® . This compound is orally active and is rapidly absorbed after oral doses, having a bioavailability of approximately 23% . Valsartan appears as a white or almost white hygroscopic powder. This compound must be kept in an air-tight container and should be protected from light and heat. It is available in film-coated tablets containing valsartan 40, 80, 160, or 320 mg, and capsules with dosage of 80 or 160 mg. Tablet combinations of valsartan with hydrochlorothiazide or amlodipine are also availabl

    INFOGEST static in vitro simulation of gastrointestinal food digestion

    Get PDF
    peer-reviewedSupplementary information is available at http://dx.doi.org/10.1038/s41596-018-0119-1 or https://www.nature.com/articles/s41596-018-0119-1#Sec45.Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.COST action FA1005 INFOGEST (http://www.cost-infogest.eu/ ) is acknowledged for providing funding for travel, meetings and conferences (2011-2015). The French National Institute for Agricultural Research (INRA, www.inra.fr) is acknowledged for their continuous support of the INFOGEST network by organising and co-funding the International Conference on Food Digestion and workgroup meeting

    Preparation and Application of Carboxymethyl Yam (Dioscorea esculenta) Starch

    No full text
    Yam (Dioscorea esculenta) starch was modified by carboxymethylation. The effect of reaction parameters, amount of sodium hydroxide (NaOH), amount of sodium monochloroacetate (SMCA), and reaction time on the degree of substitution (DS) of carboxymethyl yam starch (CMS), was studied using the Box–Behnken experimental design. Physicochemical and potency to be a tablet disintegrant of CMS were evaluated. CMS with DS in the range of 0.08–0.19 were obtained. The results from regression analysis indicated that the most important factor in controlling DS was the amount of NaOH followed by SMCA content and reaction time. However, high concentration of NaOH and SMCA lowered the DS. The optimal conditions to achieve the highest DS (0.19) were found to be at molar ratios of NaOH and SMCA to anhydroglucose unit of 1.80 and 2.35, respectively, and with the reaction time of 4.8 h. The swelling power and viscosity of CMS increased with an increase in the degree of modification. CMS showed satisfying tablet disintegrant properties. The tablets containing 1.0–4.0 % CMS disintegrated faster than 5 min. Hence carboxymethyl yam starch can be used as an excellent tablet disintegrant in low concentration
    corecore