27 research outputs found

    Mechanisms of Therapeutic Resistance in Cancer (Stem) Cells with Emphasis on Thyroid Cancer Cells

    Get PDF
    The two main reasons for death of cancer patients, tumor recurrence and metastasis, are multi-stage cellular processes that involve increased cell plasticity and coincide with elevated resistance to anti-cancer treatments. Epithelial-to-mesenchymal transition (EMT) is a key contributor to metastasis in many cancer types, including thyroid cancer and is known to confer stem cell-like properties onto cancer cells. This review provides an overview of molecular mechanisms and factors known to contribute to cancer cell plasticity and capable of enhancing cancer cell resistance to radio- and chemotherapy. We elucidate the role of DNA repair mechanisms in contributing to therapeutic resistance, with a special emphasis on thyroid cancer. Next, we explore the emerging roles of autophagy and damage-associated molecular pattern responses in EMT and chemoresistance in tumor cells. Finally, we demonstrate how cancer cells, including thyroid cancer cells, can highjack the oncofetal nucleoprotein high-mobility group A2 to gain increased transformative cell plasticity, prevent apoptosis, and enhance metastasis of chemoresistant tumor cells

    LINE-1 methylation status of endogenous DNA double-strand breaks

    Get PDF
    DNA methylation and the repair of DNA double-strand breaks (DSBs) are important processes for maintaining genomic integrity. Although DSBs can be produced by numerous agents, they also occur spontaneously as endogenous DSBs (EDSBs). In this study, we evaluated the methylation status of EDSBs to determine if there is a connection between DNA methylation and EDSBs. We utilized interspersed repetitive sequence polymerase chain reaction (PCR), ligation-mediated PCR and combined bisulfite restriction analysis to examine the extent of EDSBs and methylation at long interspersed nuclear element-1 (LINE-1) sequences nearby EDSBs. We tested normal white blood cells and several cell lines derived from epithelial cancers and leukemias. Significant levels of EDSBs were detectable in all cell types. EDSBs were also found in both replicating and non-replicating cells. We found that EDSBs contain higher levels of methylation than the cellular genome. This hypermethylation is replication independent and the methylation was present in the genome at the location prior to the DNA DSB. The differences in methylation levels between EDSBs and the rest of the genome suggests that EDSBs are differentially processed, by production, end-modification, or repair, depending on the DNA methylation status

    Hypomethylation of Intragenic LINE-1 Represses Transcription in Cancer Cells through AGO2

    Get PDF
    In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1 or L1) retrotransposons is reduced. This occurs within the context of genome wide hypomethylation, and although it is common, its role is poorly understood. L1s are widely distributed both inside and outside of genes, intragenic and intergenic, respectively. Interestingly, the insertion of active full-length L1 sequences into host gene introns disrupts gene expression. Here, we evaluated if intragenic L1 hypomethylation influences their host gene expression in cancer. First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively active L1 insertions, and compared intragenic and intergenic L1 characters. We found that intragenic L1 sequences have been conserved across evolutionary time with respect to transcriptional activity and CpG dinucleotide sites for mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from two different experiments available from Gene Expression Omnibus (GEO), a database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio of down-regulated genes between demethylated normal bronchial epithelium and lung cancer was high (p<1E−27; OR = 3.14; 95% CI = 2.54–3.88), suggesting cancer genome wide hypomethylation down-regulating gene expression. Comprehensive analysis between L1 locations and gene expression showed that expression of genes containing L1s had a significantly higher likelihood to be repressed in cancer and hypomethylated normal cells. In contrast, many mRNAs derived from genes containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells. Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets intronic L1 pre-mRNA complexes and represses cancer genes. These findings represent one of the mechanisms of cancer genome wide hypomethylation altering gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated cis-regulatory element that can repress genes. This epigenetic regulation of retrotransposons likely influences many aspects of genomic biology

    Dissecting the physiology and pathophysiology of glucagon-like peptide-1

    Get PDF
    Copyright © 2018 Paternoster and Falasca. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology

    Ubiquitin Proteasome Gene Signatures in Ependymoma Molecular Subtypes

    No full text
    The ubiquitin proteasome system (UPS) is critically important for cellular homeostasis and affects virtually all key functions in normal and neoplastic cells. Currently, a comprehensive review of the role of the UPS in ependymoma (EPN) brain tumors is lacking but may provide valuable new information on cellular networks specific to different EPN subtypes and reveal future therapeutic targets. We have reviewed publicly available EPN gene transcription datasets encoding components of the UPS pathway. Reactome analysis of these data revealed genes and pathways that were able to distinguish different EPN subtypes with high significance. We identified differential transcription of several genes encoding ubiquitin E2 conjugases associated with EPN subtypes. The expression of the E2 conjugase genes UBE2C, UBE2S, and UBE2I was elevated in the ST_EPN_RELA subtype. The UBE2C and UBE2S enzymes are associated with the ubiquitin ligase anaphase promoting complex (APC/c), which regulates the degradation of substrates associated with cell cycle progression, whereas UBE2I is a Sumo-conjugating enzyme. Additionally, elevated in ST_EPN_RELA were genes for the E3 ligase and histone deacetylase HDAC4 and the F-box cullin ring ligase adaptor FBX031. Cluster analysis demonstrated several genes encoding E3 ligases and their substrate adaptors as EPN subtype specific genetic markers. The most significant Reactome Pathways associated with differentially expressed genes for E3 ligases and their adaptors included antigen presentation, neddylation, sumoylation, and the APC/c complex. Our analysis provides several UPS associated factors that may be attractive markers and future therapeutic targets for the subtype-specific treatment of EPN patients

    Nuclear High Mobility Group A2 (HMGA2) Interactome Revealed by Biotin Proximity Labeling

    No full text
    The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments

    C1q/TNF‐related peptide 8 (CTRP8) promotes temozolomide resistance in human glioblastoma

    No full text
    The C1q/TNF‐related peptide 8 (CTRP8) has recently emerged as a novel ligand of the G protein‐coupled receptor RXFP1 in the fatal brain tumor glioblastoma (GBM). We previously demonstrated that the CTRP8‐RXFP1 ligand–receptor system promotes motility and matrix invasion of patient GBM and U87 MG cells by specific phosphorylation of PI3 kinase and protein kinase C. Here, we demonstrate a novel role for CTRP8 in protecting human GBM cells against the DNA alkylating damage of temozolomide (TMZ), the standard chemotherapy drug used to treat GBM. This DNA protective role of CTRP8 required a functional RXFP1‐STAT3 signaling cascade in GBM cells. We identified N‐methylpurine DNA glycosylase (MPG), a monofunctional glycosylase that initiates base excision repair pathway by generating an apurinic/apyrimidinic (AP) site, as a new CTRP8‐RXFP1‐STAT3 target in GBM. Upon TMZ exposure, treatment with CTRP8 reduced the formation of AP sites and double‐strand DNA breaks in GBM cells. This CTRP8 effect was independent of cellular MGMT levels and was associated with decreased caspase 3/7 activity and increased survival of human GBM. CTRP8‐induced RXFP1 activation caused an increase in cellular protein levels of the anti‐apoptotic Bcl members and STAT3 targets Bcl‐2 and Bcl‐XL in human GBM. Collectively, our results demonstrate a novel multipronged and clinically relevant mechanism by which the CTRP8‐RXFP1 ligand–receptor system exerts a DNA protective function against TMZ chemotherapeutic stress in GBM. This CTRP8‐RXFP1‐STAT3 axis is a novel determinant of TMZ responsiveness/chemoresistance and an emerging new drug target for improved treatment of human GBM

    HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells

    Get PDF
    Poly(ADP‐ribose) polymerase 1 inhibitors alone or in combination with DNA damaging agents are promising clinical drugs in the treatment of cancer. However, there is a need to understand the molecular mechanisms of resistance to PARP1 inhibitors. Expression of HMGA2 in cancer is associated with poor prognosis for patients. Here, we investigated the novel relationship between HMGA2 and PARP1 in DNA damage‐induced PARP1 activity. We used human triple‐negative breast cancer and fibrosarcoma cell lines to demonstrate that HMGA2 colocalizes and interacts with PARP1. High cellular HMGA2 levels correlated with increased DNA damage‐induced PARP1 activity, which was dependent on functional DNA‐binding AT‐hook domains of HMGA2. HMGA2 inhibited PARP1 trapping to DNA and counteracted the cytotoxic effect of PARP inhibitors. Consequently, HMGA2 decreased caspase 3/7 induction and increased cell survival upon treatment with the alkylating methyl methanesulfonate alone or in combination with the PARP inhibitor AZD2281 (olaparib). HMGA2 increased mitochondrial oxygen consumption rate and spare respiratory capacity and increased NAMPT levels, suggesting metabolic support for enhanced PARP1 activity upon DNA damage. Our data showed that expression of HMGA2 in cancer cells reduces sensitivity to PARP inhibitors and suggests that targeting HMGA2 in combination with PARP inhibition may be a promising new therapeutic approach
    corecore