4 research outputs found

    Non variability of intervening absorbers observed in the UVES spectra of the "naked-eye" GRB080319

    Full text link
    The aim of this paper is to investigate the properties of the intervening absorbers lying along the line of sight of Gamma-Ray Burst (GRB) 080319B through the analysis of its optical absorption features. To this purpose, we analyze a multi-epoch, high resolution spectroscopic observations (R=40000, corresponding to 7.5 km/s) of the optical afterglow of GRB080319B (z=0.937), taken with UVES at the VLT. Thanks to the rapid response mode (RRM), we observed the afterglow just 8m:30s after the GRB onset when the magnitude was R ~ 12. This allowed us to obtain the best signal-to-noise, high resolution spectrum of a GRB afterglow ever (S/N per resolution element ~ 50). Two further RRM and target of opportunity observations were obtained starting 1.0 and 2.4 hours after the event, respectively. Four MgII absorption systems lying along the line of sight to the afterglow have been detected in the redshift range 0.5 < z < 0.8, most of them showing a complex structure featuring several components. Absorptions due to FeII, MgI and MnII are also present; they appear in four, two and one intervening absorbers, respectively. One out of four systems show a MgII2796 rest frame equivalent width larger than 1A. This confirms the excess of strong MgII absorbers compared to quasars, with dn/dz = 0.9, ~ 4 times larger than the one observed along quasar lines of sight. In addition, the analysis of multi-epoch, high-resolution spectra allowed us to exclude a significant variability in the column density of the single components of each absorber. Combining this result with estimates of the size of the emitting region, we can reject the hypothesis that the difference between GRB and QSO MgII absorbers is due to a different size of the emitting regions.Comment: 10 pages, 15 ps figures, submitted to MNRA

    The rest-frame ultraviolet spectra of GRBs from massive rapidly-rotating stellar progenitors

    Full text link
    The properties of a massive star prior to its final explosion are imprinted in the circumstellar medium (CSM) created by its wind and termination shock. We perform a detailed, comprehensive calculation of the time-variable and angle-dependent transmission spectra of an average-luminosity Gamma-Ray Burst (GRB) which explodes in the CSM structure produced by the collapse of a 20 Msun, rapidly rotating, Z=0.001 progenitor star. We study both the case in which metals are initially in the gaseous phase, as well as the situation in which they are heavily depleted into dust. We find that high-velocity lines from low-ionization states of silicon, carbon, and iron are initially present in the spectrum only if the metals are heavily depleted into dust prior to the GRB explosion. However, such lines disappear on timescales of a fraction of a second for a burst observed on-axis, and of a few seconds for a burst seen at high-latitude, making their observation virtually impossible. Rest-frame lines produced in the termination shock are instead clearly visible in all conditions. We conclude that time-resolved, early-time spectroscopy is not a promising way in which the properties of the GRB progenitor wind can be routinely studied. Previous detections of high velocity features in GRB UV spectra must have been due either due to a superposition of a physically unrelated absorber or to a progenitor star with very unusual properties.Comment: Published in MNRAS; higher resolution figures in published version

    GRB 090426: The Environment of a Rest-Frame 0.35-second Gamma-Ray Burst at Redshift z=2.609

    Get PDF
    We present the discovery of an absorption-line redshift of z = 2.609 for GRB 090426, establishing the first firm lower limit to a redshift for a gamma-ray burst with an observed duration of <2 s. With a rest-frame burst duration of T_90z = 0.35 s and a detailed examination of the peak energy of the event, we suggest that this is likely (at >90% confidence) a member of the short/hard phenomenological class of GRBs. From analysis of the optical-afterglow spectrum we find that the burst originated along a very low HI column density sightline, with N_HI < 3.2 x 10^19 cm^-2. Our GRB 090426 afterglow spectrum also appears to have weaker low-ionisation absorption (Si II, C II) than ~95% of previous afterglow spectra. Finally, we also report the discovery of a blue, very luminous, star-forming putative host galaxy (~2 L*) at a small angular offset from the location of the optical afterglow. We consider the implications of this unique GRB in the context of burst duration classification and our understanding of GRB progenitor scenarios.Comment: Submitted to MNRA

    Subtype and regional-specific neuroinflammation in sporadic creutzfeldt-jakob disease.

    Get PDF
    The present study identifies deregulated cytokines and mediators of the immune response in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 and VV2 subtypes compared to age-matched controls. Deregulated genes include pro- and anti-inflammatory cytokines, toll-like receptors, colony stimulating factors, cathepsins, members of the complement system, and members of the integrin and CTL/CTLD family with particular regional and sCJD subtype patterns. Analysis of cytokines and mediators at protein level shows expression of selected molecules and receptors in neurons, in astrocytes, and/or in microglia, thus suggesting interactions between neurons and glial cells, mainly microglia, in the neuroinflammatory response in sCJD. Similar inflammatory responses have been shown in the tg340 sCJD MM1 mice, revealing a progressive deregulation of inflammatory mediators with disease progression. Yet, inflammatory molecules involved are subjected to species differences in humans and mice. Moreover, inflammatory-related cell signaling pathways NFκB/IKK and JAK/STAT are activated in sCJD and sCJD MM1 mice. Together, the present observations show a self-sustained complex inflammatory and inflammatory-related responses occurring already at early clinical stages in animal model and dramatically progressing at advanced stages of sCJD. Considering this scenario, measures tailored to modulate (activate or inhibit) specific molecules could be therapeutic options in CJD.peerReviewe
    corecore