146 research outputs found

    Plant functioning in a changing global atmosphere

    Get PDF
    Editorial, Plant Biology, Volume 22, Issue S1, Special Issue: Plant Functioning in a Changing Global Atmoshphere

    Investigating Forest Photosynthetic Response to Elevated CO2 Using UAV-Based Measurements of Solar Induced Fluorescence

    Get PDF
    The response of ecosystems to increasing atmospheric CO2 will have significant, but still uncertain, impacts on the global carbon and water cycles. A lot of infounation has been gained from Free Air CO2 Enrichment (FACE) experiments, but the response of mature forest ecosystems remains a significant knowledge gap. One of the challenges in FACE studies is obtaining an integrated measure of canopy photosynthesis at the scale of the treatment ring. A new remote sensing approach for measuring photosynthetic activity is based on Solar Induced Fluorescence (SIF), which is emitted by plants during photosynthesis, and is closely linked to the rates and regulation of photosynthesis. We proposed that UAV-based SIF measurements, that enable the spectrometer field of view to be targeted to the treatment ring, provide a unique opportunity for investigating the dynamics of photosynthetic responses to elevated CO2. We have successfully tested this approach in a new FACE site, located in a mature oak forest in the UK. We flew a series of flights across the experiment arrays, collecting a number of spectra. We combined these with ground-based physiological and optical measurements, and see great promise in the use of UAV-based SIF measurements in FACE and other global change experiments.Peer reviewe

    Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves

    Get PDF
    Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2], which is expected to rise from about 400 μmol mol−1 in 2015 to 550 μmol mol−1 by 2050. Changes to plant physiology and crop responses from elevated [CO2] (e[CO2]) are well documented for some environments, but field-level responses in dryland Mediterranean environments with terminal drought and heat waves are scarce. The Australian Grains Free Air CO2 Enrichment facility was established to compare wheat (Triticum aestivum) growth and yield under ambient (~370 μmol−1 in 2007) and e[CO2] (550 μmol−1) in semi-arid environments. Experiments were undertaken at two dryland sites (Horsham and Walpeup) across three years with two cultivars, two sowing times and two irrigation treatments. Mean yield stimulation due to e[CO2] was 24% at Horsham and 53% at Walpeup, with some treatment responses greater than 70%, depending on environment. Under supplemental irrigation, e[CO2] stimulated yields at Horsham by 37% compared to 13% under rainfed conditions, showing that water limited growth and yield response to e[CO2]. Heat wave effects were ameliorated under e[CO2] as shown by reductions of 31% and 54% in screenings and 10% and 12% larger kernels (Horsham and Walpeup). Greatest yield stimulations occurred in the e[CO2] late sowing and heat stressed treatments, when supplied with more water. There were no clear differences in cultivar response due to e[CO2]. Multiple regression showed that yield response to e[CO2] depended on temperatures and water availability before and after anthesis. Thus, timing of temperature and water and the crop's ability to translocate carbohydrates to the grain postanthesis were all important in determining the e[CO2] response. The large responses to e[CO2] under dryland conditions have not been previously reported and underscore the need for field level research to provide mechanistic understanding for adapting crops to a changing climate

    Elevated atmospheric [CO<sub>2</sub>] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves

    Get PDF
    Tausz, M ORCiD: 0000-0001-8205-8561Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2], which is expected to rise from about 400 μmol mol-1 in 2015 to 550 μmol mol-1 by 2050. Changes to plant physiology and crop responses from elevated [CO2] (e[CO2]) are well documented for some environments, but field-level responses in dryland Mediterranean environments with terminal drought and heat waves are scarce. The Australian Grains Free Air CO2 Enrichment facility was established to compare wheat (Triticum aestivum) growth and yield under ambient (~370 μmol-1 in 2007) and e[CO2] (550 μmol-1) in semi-arid environments. Experiments were undertaken at two dryland sites (Horsham and Walpeup) across three years with two cultivars, two sowing times and two irrigation treatments. Mean yield stimulation due to e[CO2] was 24% at Horsham and 53% at Walpeup, with some treatment responses greater than 70%, depending on environment. Under supplemental irrigation, e[CO2] stimulated yields at Horsham by 37% compared to 13% under rainfed conditions, showing that water limited growth and yield response to e[CO2]. Heat wave effects were ameliorated under e[CO2] as shown by reductions of 31% and 54% in screenings and 10% and 12% larger kernels (Horsham and Walpeup). Greatest yield stimulations occurred in the e[CO2] late sowing and heat stressed treatments, when supplied with more water. There were no clear differences in cultivar response due to e[CO2]. Multiple regression showed that yield response to e[CO2] depended on temperatures and water availability before and after anthesis. Thus, timing of temperature and water and the crop's ability to translocate carbohydrates to the grain postanthesis were all important in determining the e[CO2] response. The large responses to e[CO2] under dryland conditions have not been previously reported and underscore the need for field level research to provide mechanistic understanding for adapting crops to a changing climate. © 2016 John Wiley & Sons Ltd

    Benefits of increasing transpiration efficiency in wheat under elevated CO<sub>2</sub> for rainfed regions

    Get PDF
    Tausz, M ORCiD: 0000-0001-8205-8561Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high-TE cultivar (cv. Drysdale) over its almost identical low-TE parent line (Hartog), from about −7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221–1,351 mm annual rainfall), under the present-day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost-benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5-year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO2 raises this nation-wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Lt

    Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations

    Get PDF
    Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days-months) and species compositio

    Elevated CO2has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat

    Get PDF
    While the general effect of CO2 enrichment on photosynthesis, stomatal conductance, N content, and yield has been documented, there is still some uncertainty as to whether there are interactive effects between CO2 enrichment and other factors, such as temperature, geographical location, water availability, and cultivar. In addition, the metabolic coordination between leaves and grains, which is crucial for crop responsiveness to elevated CO2, has never been examined closely. Here, we address these two aspects by multi-level analyses of data from several free-air CO2 enrichment experiments conducted in five different countries. There was little effect of elevated CO2 on yield (except in the USA), likely due to photosynthetic capacity acclimation, as reflected by protein profiles. In addition, there was a significant decrease in leaf amino acids (threonine) and macroelements (e.g. K) at elevated CO2, while other elements, such as Mg or S, increased. Despite the non-significant effect of CO2 enrichment on yield, grains appeared to be significantly depleted in N (as expected), but also in threonine, the S-containing amino acid methionine, and Mg. Overall, our results suggest a strong detrimental effect of CO2 enrichment on nutrient availability and remobilization from leaves to grains.This work was supported by the Department of Industry, Energy and Innovation of the Government of Navarre (PI040 TRIGOCLIM). The technical support given by Inés Urretavizcaya, Petra Högy, and Jürgen Franzaring in harvesting and sample management is acknowledged. JC was supported by an Australia Awards PhD Scholarship. GT was supported by a Connect Talent Award from the Region Pays de la Loire – Angers Loire Metropole (France). Research at the Australian Grains Free Air CO2 Enrichment (AGFACE) facility was jointly run by the University of Melbourne and Agriculture Victoria with funding from the Grains Research and Development Corporation (under contract no. DAV00137) and the Australian Commonwealth Department of Agriculture and Water Resources (under contract no. FtRG 1193982-41). CAAS-FACE was supported by the National Key Research and Development Project (under contracts 2016YFD0300401 and 2019YFA0607403). The FACE experiment in Italy was supported by the AGER project ‘Durum wheat adaptation to global change: effect of elevated CO2 on yield and quality traits’ and by the collaboration CREA-CNR. Finally, the authors also acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)

    Cereal progenitors differ in stand harvest characteristics from related wild grasses

    Get PDF
    The domestication of crops in the Fertile Crescent began approximately 10,000 years ago indicating a change from a hunter-gatherer lifestyle to a sedentary, agriculture-based existence. The exploitation of wild plants changed during this transition, such that a small number of crops were domesticated from the broader range of species gathered from the wild. However, the reasons for this change are unclear. Previous studies have shown unexpectedly that crop progenitors are not consistently higher yielding than related wild grass species, when growing without competition. In this study, we replicate more closely natural competition within wild stands, using two greenhouse experiments to investigate whether cereal progenitors exhibit a greater seed yield per unit area than related wild species that were not domesticated. Stands of cereal progenitors do not provide a greater total seed yield per unit ground area than related wild species, but these crop progenitors do have greater reproductive efficiency than closely related wild species, with nearly twice the harvest index (the ratio of harvested seeds to total shoot dry mass). These differences arise because the progenitors have greater seed yield per tiller than closely related wild species, due to larger individual seed size but no reduction in seed number per tiller. The harvest characteristics of cereal progenitors may have made them a more attractive prospect than closely related wild species for the early cultivators who first planted these species, or could suggest an ecological filtering mechanism. Synthesis. Overall, we show that the maintenance of a high harvest index under competition, the packaging of seed in large tillers, and large seeds, consistently distinguish crop progenitors from closely related wild grass species. However, the archaeological significance of these findings remains unclear, since a number of more distantly related species, including wild oats, have an equally high or higher harvest index and yield than some of the progenitor species. Domestication of the earliest cereal crops from the pool of wild species available cannot therefore be explained solely by species differences in yield and harvest characteristics, and must also consider other plant traits
    corecore