8 research outputs found

    Average capacity analysis of FSO system with Airy beam as carrier over exponentiated Weibull channels

    No full text
    Based on scintillation index of Airy beam and exponentiated Weibull channel model, analytical expressions of average channel capacity for free-space optical (FSO) communication links with Airy beam as signal carrier under weak atmospheric turbulence and on-off keying modulation scheme are derived. The average capacity at various propagation distances, transverse scale factors and exponential decay factors has been evaluated. And we compared the average capacity of FSO links with Airy beam and Gaussian beam as signal carrier. The results show that the average capacity of FSO links with Airy beam as carrier increases with the increase of mean signal-to-noise ratio and decreases uniformly with the increase of propagation distance. When the transverse scale factor of Airy beam is about 2 cm, a higher average capacity can be obtained. And the smaller the exponential decay factor of Airy beam, the larger the average capacity. Under the same source power or source width, the average capacity of FSO links with Airy beam as carrier is significantly higher than that of FSO links with Gaussian beam as carrier. The results of this research have some reference significance for the application of Airy beam in FSO communication system

    Research on NOFRF Entropy-Based Detection Method for Early Damage of Pillar Porcelain Insulator

    No full text
    The pillar porcelain insulator is an important protection device that is related to the safety of the entire power grid. Small damage of it may even cause a disaster. Nonlinear output frequency response functions (NOFRFs) can well reflect the nonlinear characteristics of early damage in the system. This paper uses the NOFRF entropy-based harmonic excitation detection method to detect the damage of the structure. Its effect has been verified by using metal specimens. Then, the pulse hammer detection and harmonic detection are carried out to detect the early-stage damage of the pillar porcelain insulator, and they achieve a good result, which verifies that the harmonic detection method can detect the early-stage damage in the pillar porcelain insulator as well. In addition, the orthogonal test of the simulated breathing crack model is used to search the greatest influence of the parameters of crack on the detection index. Through the orthogonal analysis, the results show that among the lengths, positions, and angles of the crack, the length of crack is the main factor that affects the detection index

    Postoperative and Preprosthetic Care

    No full text
    corecore