42 research outputs found

    Far-Ultraviolet and Far-Infrared Bivariate Luminosity Function of Galaxies: Complex Relation between Stellar and Dust Emission

    Get PDF
    Far-ultraviolet (FUV) and far-infrared (FIR) luminosity functions (LFs) of galaxies show a strong evolution from z=0z = 0 to z=1z = 1, but the FIR LF evolves much stronger than the FUV one. The FUV is dominantly radiated from newly formed short-lived OB stars, while the FIR is emitted by dust grains heated by the FUV radiation field. It is known that dust is always associated with star formation activity. Thus, both FUV and FIR are tightly related to the star formation in galaxies, but in a very complicated manner. In order to disentangle the relation between FUV and FIR emissions, we estimate the UV-IR bivariate LF (BLF) of galaxies with {\sl GALEX} and {\sl AKARI} All-Sky Survey datasets. Recently we invented a new mathematical method to construct the BLF with given marginals and prescribed correlation coefficient. This method makes use of a tool from mathematical statistics, so called "copula". The copula enables us to construct a bivariate distribution function from given marginal distributions with prescribed correlation and/or dependence structure. With this new formulation and FUV and FIR univariate LFs, we analyze various FUV and FIR data with {\sl GALEX}, {\sl Spitzer}, and {\sl AKARI} to estimate the UV-IR BLF. The obtained BLFs naturally explain the nonlinear complicated relation between FUV and FIR emission from star-forming galaxies. Though the faint-end of the BLF was not well constrained for high-zz samples, the estimated linear correlation coefficient ρ\rho was found to be very high, and is remarkably stable with redshifts (from 0.95 at z=0z = 0 to 0.85 at z=1.0z = 1.0). This implies the evolution of the UV-IR BLF is mainly due to the different evolution of the univariate LFs, and may not be controlled by the dependence structure.Comment: 10 pages, 7 figures, Earth, Planets and Space, in pres

    Experimental search for the decay mode K_L -> pi^0 gamma e^+ e^-

    Full text link
    We report on results of a search for the decay mode K_L -> pi^0 gamma e^+ e^- conducted by the E162 experiment at KEK. We observed no events and set a 90% confidence level upper limit of Br(K_L -> pi^0 gamma e^+ e^-)< 7.1x10^{-7} for its branching ratio. This is the first published experimental result on this decay mode.Comment: 10 pages, 4 figures, submitted to Physics Letters

    Direct CP, T and/or CPT violations in the K^0-\bar{K^0} system - Implications of the recent KTeV results on 2π2\pi decays -

    Full text link
    The recent results on the CP violating parameters Re(e'/e) and \Delta\phi = \phi_{00}-\phi_{+-} reported by the KTeV Collaboration are analyzed with a view to constrain CP, T and CPT violations in a decay process. Combining with some relevant data compiled by the Particle Data Group, we find Re(e_2-e_0) = (0.85 +- 3.11)*10^{-4} and Im(e_2-e_0) = (3.2 +- 0.7)*10^{-4}, where Re(e_I) and Im(e_I) represent respectively CP/CPT and CP/T violations in decay of K^0 and \bar{K^0} into a 2\pi state with isospin I.Comment: 7 pages, No figure

    Evolution of the infrared luminosity density and star formation history up to z~1: preliminary results from MIPS

    Full text link
    Using deep observations of the Chandra Deep Field South obtained with MIPS at 24mic, we present our preliminary estimates on the evolution of the infrared (IR) luminosity density of the Universe from z=0 to z~1. We find that a pure density evolution of the IR luminosity function is clearly excluded by the data. The characteristic luminosity L_IR* evolves at least by (1+z)^3.5 with lookback time, but our monochromatic approach does not allow us to break the degeneracy between a pure evolution in luminosity or an evolution in both density and luminosity. Our results imply that IR luminous systems (L_IR > 10^11 L_sol) become the dominant population contributing to the comoving IR energy density beyond z~0.5-0.6. The uncertainties affecting our measurements are largely dominated by the poor constraints on the spectral energy distributions that are used to translate the observed 24mic flux into luminosities.Comment: 4 pages, 2 figures. To be published in "Starbursts: From 30 Doradus to Lyman Break Galaxies", held in Cambridge, 6-10 September 2004, Ed. R. de Grijs & R. M. Gonzalez Delgad

    ALMA deep field in SSA22: Blindly detected CO emitters and [C ii] emitter candidates

    Get PDF
    We report the identification of four millimeter line-emitting galaxies with the Atacama Large Milli/submillimeter Array (ALMA) in SSA22 Field (ADF22). We analyze the ALMA 1.1-mm survey data, with an effective survey area of 5 arcmin2, frequency ranges of 253.1–256.8 and 269.1–272.8 GHz, angular resolution of 0 â€Čâ€Č. .â€Čâ€Č 7 and rms noise of 0.8 mJy beam−1 at 36 km s−1 velocity resolution. We detect four line-emitter candidates with significance levels above 6σ. We identify one of the four sources as a CO(9–8) emitter at z = 3.1 in a member of the proto-cluster known in this field. Another line emitter with an optical counterpart is likely a CO(4–3) emitter at z = 0.7. The other two sources without any millimeter continuum or optical/near-infrared counterpart are likely to be [C II] emitter candidates at z = 6.0 and 6.5. The equivalent widths of the [C II] candidates are consistent with those of confirmed high-redshift [C II] emitters and candidates, and are a factor of 10 times larger than that of the CO(9–8) emitter detected in this search. The [C II] luminosity of the candidates are 4–7 × 108 L⊙. The star formation rates (SFRs) of these sources are estimated to be 10–20 M⊙ yr−1 if we adopt an empirical [C II] luminosity–SFR relation. One of them has a relatively low S/N ratio, but shows features characteristic of emission lines. Assuming that at least one of the two candidates is a [C II] emitter, we derive a lower limit of [C II]-based star formation rate density (SFRD) at z ∌ 6. The resulting value of >10−2 M⊙ yr−1 Mpc−3 is consistent with the dust-uncorrected UV-based SFRD. Future millimeter/submillimeter surveys can be used to detect a number of high-redshift line emitters, with which to study the star formation history in the early universe

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    corecore