412 research outputs found
Alginate inhibits iron absorption from ferrous gluconate in a randomized controlled trial and reduces iron uptake into Caco-2 cells
Previous in vitro results indicated that alginate beads might be a useful vehicle for food iron fortification. A human study was undertaken to test the hypothesis that alginate enhances iron absorption. A randomised, single blinded, cross-over trial was carried out in which iron absorption was measured from serum iron appearance after a test meal. Overnight-fasted volunteers (n=15) were given a test meal of 200g cola-flavoured jelly plus 21 mg iron as ferrous gluconate, either in alginate beads mixed into the jelly or in a capsule. Iron absorption was lower from the alginate beads than from ferrous gluconate (8.5% and 12.6% respectively, p=0.003). Sub-group B (n=9) consumed the test meals together with 600 mg calcium to determine whether alginate modified the inhibitory effect of calcium. Calcium reduced iron absorption from ferrous gluconate by 51%, from 11.5% to 5.6% (p=0.014), and from alginate beads by 37%, from 8.3% to 5.2% (p=0.009). In vitro studies using Caco-2 cells were designed to explore the reasons for the difference between the previous in vitro findings and the human study; confirmed the inhibitory effect of alginate. Beads similar to those used in the human study were subjected to simulated gastrointestinal digestion, with and without cola jelly, and the digestate applied to Caco-2 cells. Both alginate and cola jelly significantly reduced iron uptake into the cells, by 34% (p=0.009) and 35% (p=0.003) respectively. The combination of cola jelly and calcium produced a very low ferritin response, 16.5% (p<0.001) of that observed with ferrous gluconate alone. The results of these studies demonstrate that alginate beads are not a useful delivery system for soluble salts of iron for the purpose of food fortification
Dominant features in three-dimensional turbulence structure: comparison of non-uniform accelerating and decelerating flows
The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant Îș and to estimate sets of log-law integration constant B r and wake parameter Đ, where their findings are also compared with values from previous studies. From Îș, B r and Đ findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all Îș, B r and Đ follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter ÎČ equations. Their exponential constants are described by quadratic functions in the investigated ÎČ range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not
NLO QCD corrections to tW' and tZ' production in forward-backward asymmetry models
We consider Z' and W' models recently proposed to explain the top
forward-backward asymmetry at the Tevatron. We present the next-to-leading
order QCD corrections to associated production of such vector bosons together
with top quarks at the Large Hadron Collider, for centre-of-mass energies of 7
and 8 TeV. The corrections are significant, modifying the total production
cross-section by 30-50%. We consider the effects of the corrections on the top
and vector-boson kinematics. The results are directly applicable to current
experimental searches, for both the ATLAS and CMS collaborations.Comment: 62 pages, 13 figures, 36 tables. v3 Updated to correspond to Journal
version and incorporate supplementary materia
A New Era in the Quest for Dark Matter
There is a growing sense of `crisis' in the dark matter community, due to the
absence of evidence for the most popular candidates such as weakly interacting
massive particles, axions, and sterile neutrinos, despite the enormous effort
that has gone into searching for these particles. Here, we discuss what we have
learned about the nature of dark matter from past experiments, and the
implications for planned dark matter searches in the next decade. We argue that
diversifying the experimental effort, incorporating astronomical surveys and
gravitational wave observations, is our best hope to make progress on the dark
matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as âaccidental cell deathâ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. âRegulated cell deathâ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Prioritizing micronutrients for the purpose of reviewing their requirements: a protocol developed by EURRECA
Background: The EURRECA (EURopean micronutrient RECommendations Aligned) Network of Excellence (http://www.eurreca.org) is working towards the development of aligned recommendations. A protocol was required to assign resources to those micronutrients for which recommendations are most in need of alignment. Methods: Three important 'a priori' criteria were the basis for ranking micronutrients: (A) the amount of new scientific evidence, particularly from randomized controlled trials; (B) the public health relevance of micronutrients; (C) variations in current micronutrient recommendations. A total of 28 micronutrients were included in the protocol, which was initially undertaken centrally by one person for each of the different population groups defined in EURRECA: infants, children and adolescents, adults, elderly, pregnant and lactating women, and low income and immigrant populations. The results were then reviewed and refined by EURRECA's population group experts. The rankings of the different population groups were combined to give an overall average ranking of micronutrients. Results: The 10 highest ranked micronutrients were vitamin D, iron, folate, vitamin B12, zinc, calcium, vitamin C, selenium, iodine and copper. Conclusions: Micronutrient recommendations should be regularly updated to reflect new scientific nutrition and public health evidence. The strategy of priority setting described in this paper will be a helpful procedure for policy makers and scientific advisory bodies. European Journal of Clinical Nutrition (2010) 64, S19-530; doi:10.1038/ejcn.2010.5
Fully spray-coated triple-cation perovskite solar cells
We use ultrasonic spray-coating to sequentially deposit thin films of tin oxide, a triple-cation perovskite and spiro-OMeTAD, allowing us fabricate perovskite solar cells (PSCs) with a champion reverse scan power conversion efficiency (PCE) of 19.4% on small-area substrates. We show that the use of spray-deposition permits us to rapidly (>80âmmâsâ1) coat 25âmm Ă 75âmm substrates that were divided into a series of devices each with an active area of 15.4 mm2, yielding an average PCE of 10.3% and a peak PCE of 16.3%. By connecting seven 15.4 mm2 devices in parallel on a single substrate, we create a device having an effective active area of 1.08 cm2 and a PCE of 12.7%. This work demonstrates the possibility for spray-coating to fabricate high efficiency and low-cost perovskite solar cells at speed
Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga
Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., ĂÂș-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat
- âŠ