11 research outputs found

    Treatment of Eutrophic Water and Wastewater from Valsequillo Reservoir, Puebla, Mexico by Means of Ozonation: A Multiparameter Approach

    No full text
    The present work aims to elucidate the possibility of injecting ozone into surface waters combined with urban wastewaters in order to improve the water quality of the High Atoyac Sub-basin (HAS) in Central Mexico. For this purpose, twenty physicochemical parameters, eight heavy metals, seven organic compounds, and one biological indicator were assessed in water from different sites of the studied area (the Alseseca River, the Atoyac River and the Valsequillo Reservoir). Results demonstrated that O3 injection led to the decrease of the aromatic fraction of organic molecules since the Spectral Absorption Coefficient at 254 nanometers (SAC254) reduction was found to be 31.7% in the Valsequillo Reservoir water samples. Maximum Chemical Oxygen Demand (COD) removal was observed to be 60.2% from the Alseseca River with a 0.26 mg O3/mg initial COD dose. Among all the phthalates studied in the present work, Di(2-ethylhexyl) phthalate (DEHP) exhibited the highest concentration (5.8 μg/L in the Atoyac River). Treatment with O3 was not effective in eliminating fecal coliforms (FC) in waters that host high organic matter (OM) loads as opposed to waters with low OM. After the injection of 4.7 mg O3/mg COD in the VO3-AT water sample, a 90% removal of Iron (Fe) and Aluminum (Al) was registered; while Manganese (Mn), Nickel (Ni), Zinc (Zn), and Cooper (Cu) showed a 73%, 67%, 81%, and 80% removal, respectively; Chromium (Cr) registered the highest removal (~100%). The present work demonstrated that while finding a suitable O3 dose to improve the quality of water in the HAS, the 5-days Biochemical Oxygen Demand (BOD5)/COD ratio (i.e., biodegradability) is more important than the overall OM removal percentage proving that O3 injection is a feasible process for the treatment of eutrophic waters from HAS

    Two years after pandemic influenza A/2009/H1N1: What have we learned?

    No full text
    The world had been anticipating another influenza pandemic since the last one in 1968. The pandemic influenza A H1N1 2009 virus (A/2009/H1N1) finally arrived, causing the first pandemic influenza of the new millennium, which has affected over 214 countries and caused over 18,449 deaths. Because of the persistent threat from the A/H5N1 virus since 1997 and the outbreak of the severe acute respiratory syndrome (SARS) coronavirus in 2003, medical and scientific communities have been more prepared in mindset and infrastructure. This preparedness has allowed for rapid and effective research on the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the disease, with impacts on its control. A PubMed search using the keywords "pandemic influenza virus H1N1 2009" yielded over 2,500 publications, which markedly exceeded the number published on previous pandemics. Only representative works with relevance to clinical microbiology and infectious diseases are reviewed in this article. A significant increase in the understanding of this virus and the disease within such a short amount of time has allowed for the timely development of diagnostic tests, treatments, and preventive measures. These findings could prove useful for future randomized controlled clinical trials and the epidemiological control of future pandemics. © 2012, American Society for Microbiology. All Rights Reserved.link_to_subscribed_fulltex

    Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa

    No full text
    corecore