62 research outputs found

    Colorado Ultraviolet Transit Experiment Data Simulator

    Get PDF
    The Colorado Ultraviolet Transit Experiment (CUTE) is a 6U NASA CubeSat carrying on-board a low-resolution (R~2000--3000), near-ultraviolet (2500--3300 {\AA}) spectrograph. It has a rectangular primary Cassegrain telescope to maximize the collecting area. CUTE, which is planned for launch in Spring 2020, is designed to monitor transiting extra-solar planets orbiting bright, nearby stars aiming at improving our understanding of planet atmospheric escape and star-planet interaction processes. We present here the CUTE data simulator, which we complemented with a basic data reduction pipeline. This pipeline will be then updated once the final CUTE data reduction pipeline is developed. We show here the application of the simulator to the HD209458 system and a first estimate of the precision on the measurement of the transit depth as a function of temperature and magnitude of the host star. We also present estimates of the effect of spacecraft jitter on the final spectral resolution. The simulator has been developed considering also scalability and adaptability to other missions carrying on-board a long-slit spectrograph. The data simulator will be used to inform the CUTE target selection, choose the spacecraft and instrument settings for each observation, and construct synthetic CUTE wavelength-dependent transit light curves on which to develop the CUTE data reduction pipeline.Comment: Accepted for publication in the Journal of Astronomical Telescopes, Instruments and System

    PENGEMBANGAN ALAT PERAGA MATEMATIKA BERBASIS AUDIO PADA POKOK BAHASAN KELILING DAN LUAS SEGITIGA UNTUK SISWA TUNANETRA SMPLB TPA JEMBER

    Get PDF
    Abstract.The aimof this research is to develop an audio based math media.It will help blind stunentd to understand thecircumferenceandtriangle area concepts. The methodis obtained from modifyng Four D modeland data collecting proccessin this research usequestionnaires andobservation. The validation results done by computerexpert, education expert and math teacherof SMPLBclass VII-A shows that 87.91% of the criteria have been fullfiled the validityand no revision required. The next stepis implementation test forblind studentsof class VII. The media test results shows that 92.85% have been fulfilledthevalidity. It means that the media has a very valid category and no revision required. The development result ofaudio based math media is an executable software. The product of this research are 6 units audio based math media and the manual book. Key Words:development research, audio, blind student

    The Colorado Ultraviolet Transit Experiment: The First Dedicated Ultraviolet Exoplanet Mission

    Get PDF
    The past few years of space mission development have seen an increase in the use of small satellites as platforms for dedicated astrophysical research; they offer unique capabilities for time-domain science and complementary advantages over large shared resource facilities like the Hubble Space Telescope, including: (1) low cost and relatively quick development timelines; (2) observing strategies dedicated to niche but important science questions; and (3) ample opportunity for students and early career scientists and engineers to be involved on the front lines of space mission development. The Colorado Ultraviolet Transit Experiment (CUTE) is a NASA-supported 6U CubeSat assembled and tested at the Laboratory for Atmospheric and Space Physics within the University of Colorado Boulder. It is designed to observe the evolving atmospheres on short-period exoplanets with a dedicated science mission unachievable by current and planned future space missions. CUTE operates with a bandpass of ∼2487 – 3376 Å and an average spectral resolution element of 3.9 Å. The mission launched in September of 2021 and is in the process of conducting transit spectroscopy of approximately one dozen short-period exoplanets during its primary mission. This proceeding describes the overall CUTE satellite program, including the mission development integration and testing, anticipated science return, and lessons learned to improve both universities’ and commercial companies’ ability to create and collaborate on successful academically and research-focused small satellite missions. While CubeSats are becoming increasingly accessible and utilized for scientific research and student education, CUTE serves as an example that university small satellite programs have specific needs to successfully and efficiently achieve both scientific and educational elements. These include (1) a minimum threshold of commercial-off-the-shelf product quality, performance, and support; (2) specific and timely guidelines from launch service providers regarding launch readiness and delivery requirements; (3) and sufficient funding to provide multi-disciplinary engineering and program management support across the developmental life-cycle of the mission

    Colorado Ultraviolet Transit Experiment: a dedicated CubeSat mission to study exoplanetary mass loss and magnetic fields

    Get PDF
    The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 to 3300  Å) 6U CubeSat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planet’s orbital motion. As a dedicated mission, CUTE will observe ≳100 spectroscopic transits of hot Jupiters over a nominal 7-month mission. This represents the equivalent of <700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available CubeSat volume by means of an innovative optical design to achieve a projected effective area of ∼28  cm^2, low instrumental background, and a spectral resolving power of R∼3000 over the primary science bandpass. These performance characteristics enable CUTE to discern transit depths between 0.1% and 1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration, and launch timeline

    Modelling Z → ττ processes in ATLAS with τ-embedded Z → μμ data

    Get PDF
    This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z→ττ decays. In Z→μμ events selected from proton-proton collision data recorded at √s=8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by τ leptons from simulated Z→ττ decays at the level of reconstructed tracks and calorimeter cells. The τ lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and τ leptons as well as the detector response to the τ decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called τ-embedding method is particularly relevant for Higgs boson searches and analyses in ττ final states, where Zarrowττ decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H→ττ analysis of the full datataset recorded during 2011 and 2012

    Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    Get PDF
    The rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range |η| &gt; 2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 &lt; |η| &lt; 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures

    Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at √s=8 TeV using the ATLAS detector

    Get PDF
    This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton–proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb−1. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: |ηγ | < 1.37 and 1.56 < |ηγ | < 2.37. The measurement covers photon transverse energies 25 < Eγ T < 400 GeV and 25 < Eγ T < 350 GeV respectively for the two |ηγ | regions. For each jet flavour, the ratio of the cross sections in the two |ηγ | regions is also measured. The measurement is corrected for detector effects and compared to leading-order and nextto-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central γ + b measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions
    corecore