266 research outputs found

    Migrating Songbirds on Stopover Prepare for, and Recover from, Oxidative Challenges Posed by Long-Distance Flight

    Get PDF
    Managing oxidative stress is an important physiological function for all aerobic organisms, particularly during periods of prolonged high metabolic activity, such as long-distance migration across ecological barriers. However, no previous study has investigated the oxidative status of birds at different stages of migration and whether that oxidative status depends on the condition of the birds. In this study, we compared (1) energy stores and circulating oxidative status measures in (a) two species of Neotropical migrants with differing migration strategies that were sampled at an autumn stopover site before an ecological barrier; and (b) a species of trans-Saharan migrant sampled at a spring stopover site after crossing an ecological barrier; and (2) circulating oxidative measures and indicators of fat metabolism in a trans-Saharan migrant after stopovers of varying duration (0–8 nights), based on recapture records. We found fat stores to be positively correlated with circulating antioxidant capacity in Blackpoll Warblers and Red-eyed Vireos preparing for fall migration on Block Island, USA, but uncorrelated in Garden Warblers on the island of Ponza, Italy, after a spring crossing of the Sahara Desert and Mediterranean Sea. In all circumstances, fat stores were positively correlated with circulating lipid oxidation levels. Among Garden Warblers on the island of Ponza, fat anabolism increased with stopover duration while oxidative damage levels decreased. Our study provides evidence that birds build antioxidant capacity as they build fat stores at stopover sites before long flights, but does not support the idea that antioxidant stores remain elevated in birds with high fuel levels after an ecological barrier. Our results further suggest that lipid oxidation may be an inescapable hazard of using fats as the primary fuel for flight. Yet, we also show that birds on stopover are capable of recovering from the oxidative damage they have accrued during migration, as lipid oxidation levels decrease with time on stopover. Thus, the physiological strategy of migrating songbirds may be to build prophylactic antioxidant capacity in concert with fuel stores at stopover sites before a long-distance flight, and then repair oxidative damage while refueling at stopover sites after long-distance flight

    A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird

    Get PDF
    Experiments were funded by the Royal Netherlands Academy of Arts and Sciences (KNAW) Academy Ecology Fund to C.J.N—(KENMERK J1618/ECO/G437). C.J.N. was supported by a studentship funded by the Leventis Conservation Foundation through the University of St. Andrews UK and an Ubbo Emmius grant of the University of Groningen, The Netherlands. B.I.T. was supported by the Netherlands Organisation for Scientific Research (NWO‐Vidi 864.10.012).1. Diet alteration may lead to nutrient limitations even in the absence of food limitation, and this may affect physiological functions, including immunity. Nutrient limitations may also affect the maintenance of body mass and key life history events that may affect immune function. Yet, variation in immune function is largely attributed to energetic trade-offs rather than specific nutrient constraints. 2. To test the effect of diet on life history traits, we tested how diet composition affects innate immune function, body mass and moult separately and in combination with each other, and then used path analyses to generate hypotheses about the mechanistic connections between immunity and body mass under different diet composition. 3. We performed a balanced parallel and crossover design experiment with omnivorous common bulbuls Pycnonotus barbatus in out-door aviaries in Nigeria. We fed 40 wild-caught bulbuls ad libitum on fruits or invertebrates for 24 weeks, switching half of each group between treatments after 12 weeks. We assessed innate immune indices (haptoglobin, nitric oxide and ovotransferrin concentrations, and haemagglutination and haemolysis titres), body mass and primary moult, fortnightly. We simplified immune indices into three principal components (PCs), but we explored mechanistic connections between diet, body mass and each immune index separately. 4. Fruit fed bulbuls had higher body mass, earlier moult and showed higher values for two of the three immune PCs compared to invertebrate fed bulbuls. These effects were reversed when we switched bulbuls between treatments after 12 weeks. Exploring the correlations between immune function, body mass and moult, showed that an increase in immune function was associated with a decrease in body mass and delayed moult in invertebrate fed bulbuls, while fruit fed bulbuls maintained body mass despite variation in immune function. Path analyses indicated that diet composition was most likely to affect body mass and immune indices directly and independently from each other. Only haptoglobin concentration was indirectly linked to diet composition via body mass. 5. We demonstrated a causal effect of diet composition on innate immune function, body mass and moult: bulbuls were in better condition when fed on fruits than invertebrates, confirming that innate immunity is nutrient specific. Our results are unique because they show a reversible effect of diet composition on wild adult birds whose immune systems are presumably fully developed and adapted to wild conditions – demonstrating a short-term consequence of diet alteration on life history traits.Publisher PDFPeer reviewe

    Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella)

    Get PDF
    Analysis of fecal glucocorticoid (GC) metabolites has recently become the standard method to monitor adrenocortical activity in primates noninvasively. However, given variation in the production, metabolism, and excretion of GCs across species and even between sexes, there are no standard methods that are universally applicable. In particular, it is important to validate assays intended to measure GC production, test extraction and storage procedures, and consider the time course of GC metabolite excretion relative to the production and circulation of the native hormones. This study examines these four methodological aspects of fecal GC metabolite analysis in tufted capuchins (Cebus apella). Specifically, we conducted an adrenocorticotrophic hormone (ACTH) challenge on one male and one female capuchin to test the validity of four GC enzyme immunoassays (EIAs) and document the time course characterizing GC me- tabolite excretion in this species. In addition, we compare a common field-friendly technique for extracting fecal GC metabolites to an established laboratory extraction methodology and test for effects of storing “field extracts” for up to 1 yr. Results suggest that a corticosterone EIA is most sensitive to changes in GC production, provides reliable measures when extracted according to the field method, and measures GC metabolites which remain highly stable after even 12 mo of storage. Further, the time course of GC metabolite excretion is shorter than that described yet for any primate taxa. These results provide guidelines for studies of GCs in tufted capuchins, and underscore the importance of validating methods for fecal hormone analysis for each species of interest

    Paracellular Absorption: A Bat Breaks the Mammal Paradigm

    Get PDF
    Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6±3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90±11%; cellobiose, 10±3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96±11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen

    Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes

    Get PDF
    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation

    Ileal mucosal bile acid absorption is increased in Cftr knockout mice

    Get PDF
    BACKGROUND: Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis. Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid malabsorption in these individuals. However, the molecular basis of this defect is unknown. This study examines the expression of the ileal bile acid transporter protein (IBAT) and rates of diffusional (sodium independent) and active (sodium dependent) uptake of the radiolabeled bile acid taurocholate in mice with targeted disruption of the cftr gene. METHODS: Wild-type, heterozygous cftr (+/-) and homozygous cftr (-/-) mice were studied. Five one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel rods and incubated in buffer containing tracer (3)H-taurocholate. Simultaneously, adjacent segments of terminal ileum were taken and processed for immunohistochemistry and Western blots using an antibody against the IBAT protein. RESULTS: In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/-) and two-fold higher in cftr (+/-) mice compared to wild-type mice. Passive uptake was not significantly higher in cftr (-/-) mice than in controls. IBAT protein was comparably increased. Immuno-staining revealed that the greatest increases occurred in the crypts of cftr (-/-) animals. CONCLUSIONS: In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in cftr (-/-) mice > cftr (+/-) > wild-type mice. These findings indicate that bile acid malabsorption in cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function

    Urinary C-Peptide Measurement as a Marker of Nutritional Status in Macaques

    Get PDF
    Studies of the nutritional status of wild animals are important in a wide range of research areas such as ecology, behavioural ecology and reproductive biology. However, they have so far been strongly limited by the indirect nature of the available non-invasive tools for the measurement of individual energetic status. The measurement of urinary C-peptide (UCP), which in humans and great apes shows a close link to individual nutritional status, may be a more direct, non-invasive tool for such studies in other primates as well and possibly even in non-primate mammals. Here, we test the suitability of UCPs as markers of nutritional status in non-hominid primates, investigating relationships between UCPs and body-mass-index (BMI), skinfold fatness, and plasma C-peptide levels in captive and free-ranging macaques. We also conducted a food reduction experiment, with daily monitoring of body weight and UCP levels. UCP levels showed significant positive correlations with BMI and skinfold fatness in both captive and free-ranging animals and with plasma C-peptide levels in captive ones. In the feeding experiment, UCP levels were positively correlated with changes in body mass and were significantly lower during food reduction than during re-feeding and the pre-experimental control condition. We conclude that UCPs may be used as reliable biomarkers of body condition and nutritional status in studies of free-ranging catarrhines. Our results open exciting opportunities for energetic studies on free-ranging primates and possibly also other mammals
    corecore