120 research outputs found

    Cation exchange properties of the Hawaiian great soil groups

    Get PDF

    Effects of logging on landscape-level tree diversity across an elevational gradient in Bornean tropical forests

    Get PDF
    Logging has caused a substantial loss of biodiversity and associated ecosystem services. Therefore, it is important to examine how logging affects biodiversity on a landscape scale to plan responsible management of a tropical forest. Although a number of plot-based studies have shown the effect of logging on local tree species richness (alpha diversity), the effect on species turnover along environmental gradients (beta diversity) remains largely unknown. In this study, we evaluated how logging disturbance affects alpha and beta diversity along an elevational gradient on the eastern slope of Mount Trus Madi in Borneo. We further investigated how pioneer and late-successional tree species differed in the habitat range to clarify the mechanism underlying the beta diversity pattern. We selected 90 plots, each with a radius of 20 m, with a range of disturbance intensity (five classes from highly degraded forests to pristine forests) in lower (285–600 m asl) and higher elevation areas (600–1105 m asl). The remaining above-ground biomass, which is an indicator of past disturbance intensity, strongly varied across the plots (5.4–570.6 and 3.1–771.6 Mg ha−1 in lower and higher elevation areas, respectively). Diameter at breast height (DBH) and species name were recorded for all trees with a DBH larger than 10 cm. We calculated the species number per 20 individual trees for each plot to represent alpha diversity. Beta diversity along the elevational gradient was calculated as the slope of the relationship between standardized compositional dissimilarity (beta deviation) and the elevational difference. Alpha diversity decreased in higher (17.3–12.3 species per 20 trees) and lower areas (16.8–11.3 species per 20 trees) with increasing logging intensity. Beta diversity along the elevational gradient also decreased to almost zero in highly disturbed areas. Pioneer tree species had a wider elevational range than late-successional species. These results suggest that the shift in dominant tree species after logging (from late-successional to pioneer species) was the main driver of the decline in beta diversity along the elevational gradient. We conclude that preserving and restoring beta diversity are important to sustain tropical production forests

    Training Materials Utilizing Food Choices for Healthful Living

    Get PDF
    As the instructor for this program you have the unique opportunity to help communities achieve a healthier lifestyle, enjoy the benefits of good nutrition and be successful at managing Diabetes.This three part series contains practical information that is designed to be educational and interactive. The goal of this curriculum is to bring up-to-date nutrition and Diabetes information to individuals that provide nutrition and health education. We welcome your enthusiasm and sensitivity and hope you find the information useful.Funding by the United States Department of Agriculture, Cooperative State Research, Education, and Extension Service Grant Number: 94- 38826-0179

    Phospholipase D Family Member 4, a Transmembrane Glycoprotein with No Phospholipase D Activity, Expression in Spleen and Early Postnatal Microglia

    Get PDF
    BACKGROUND: Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)(4)-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4. METHODOLOGY/PRINCIPAL FINDINGS: PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity. CONCLUSIONS/SIGNIFICANCE: Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells

    The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine

    Get PDF
    It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine

    Diversity and carbon storage across the tropical forest biome

    Get PDF
    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.Additional co-authors: Kofi Affum-Baffoe, Shin-ichiro Aiba, Everton Cristo de Almeida, Edmar Almeida de Oliveira, Patricia Alvarez-Loayza, Esteban Álvarez Dávila, Ana Andrade, Luiz E. O. C. Aragão, Peter Ashton, Gerardo A. Aymard C., Timothy R. Baker, Michael Balinga, Lindsay F. Banin, Christopher Baraloto, Jean-Francois Bastin, Nicholas Berry, Jan Bogaert, Damien Bonal, Frans Bongers, Roel Brienen, José Luís C. Camargo, Carlos Cerón, Victor Chama Moscoso, Eric Chezeaux, Connie J. Clark, Álvaro Cogollo Pacheco, James A. Comiskey, Fernando Cornejo Valverde, Eurídice N. Honorio Coronado, Greta Dargie, Stuart J. Davies, Charles De Canniere, Marie Noel Djuikouo K., Jean-Louis Doucet, Terry L. Erwin, Javier Silva Espejo, Corneille E. N. Ewango, Sophie Fauset, Ted R. Feldpausch, Rafael Herrera, Martin Gilpin, Emanuel Gloor, Jefferson S. Hall, David J. Harris, Terese B. Hart, Kuswata Kartawinata, Lip Khoon Kho, Kanehiro Kitayama, Susan G. W. Laurance, William F. Laurance, Miguel E. Leal, Thomas Lovejoy, Jon C. Lovett, Faustin Mpanya Lukasu, Jean-Remy Makana, Yadvinder Malhi, Leandro Maracahipes, Beatriz S. Marimon, Ben Hur Marimon Junior, Andrew R. Marshall, Paulo S. Morandi, John Tshibamba Mukendi, Jaques Mukinzi, Reuben Nilus, Percy Núñez Vargas, Nadir C. Pallqui Camacho, Guido Pardo, Marielos Peña-Claros, Pascal Pétronelli, Georgia C. Pickavance, Axel Dalberg Poulsen, John R. Poulsen, Richard B. Primack, Hari Priyadi, Carlos A. Quesada, Jan Reitsma, Maxime Réjou-Méchain, Zorayda Restrepo, Ervan Rutishauser, Kamariah Abu Salim, Rafael P. Salomão, Ismayadi Samsoedin, Douglas Sheil, Rodrigo Sierra, Marcos Silveira, J. W. Ferry Slik, Lisa Steel, Hermann Taedoumg, Sylvester Tan, John W. Terborgh, Sean C. Thomas, Marisol Toledo, Peter M. Umunay, Luis Valenzuela Gamarra, Ima Célia Guimarães Vieira, Vincent A. Vos, Ophelia Wang, Simon Willcock & Lise Zemagh
    corecore