5 research outputs found

    Characterizing Novel Filovirus Proteins and 3-Deazaneplanocin A Derivatives as Antivirals against Non-Segmented Negative Sense RNA Viruses

    Get PDF
    Filoviruses belong to a family of RNA viruses that includes deadly emerging zoonotic pathogens such as Ebola and Marburg viruses. A concern of public health is whether recently discovered filoviruses have the potential to infect humans and cause disease. Filoviruses encode proteins that suppress innate immune signaling and this is postulated as a contributing determinant of virulence in animals. Měnglà virus (MLAV), a recently discovered bat filovirus, can infect human cells using a vesicular stomatitis virus (VSV)-MLAV GP pseudotype system. In Chapter 2, we characterize MLAV’s VP35, VP40 and VP24 proteins on their ability to regulate both human and bat type I IFN responses. Our assessment also includes MARV and EBOV protein homologs for points of comparison. Analogous to its filovirus equivalents, MLAV VP35 and VP40 proteins inhibited type I IFN responses. MLAV VP40 suppressed the IFNβ production pathway, and this is independent of its inhibition on the type I IFN signaling pathway. MLAV VP24 did not behave like either EBOV VP24, an inhibitor of type I IFN, or MARV VP24, an activator of the antioxidant response pathway. Another critical concern is the lack of approved pan-filovirus therapeutics. Broad-spectrum nucleoside analogs have demonstrated antiviral activity against filoviruses. 3-deazaneplanocin (DzNep) and its brominated derivates (CL123, CL4033 and CL4053) are adenosine analogs and exhibit inhibition of non-segmented negative sense (NNS) RNA viruses. The antiviral effect is through inhibition of the enzyme, S-adenosylhomocysteine hydrolase (SAHase), resulting in obstruction of viral methyltransferase activity and consequently impaired translation of viral mRNA. The D-like-CL4033 and L-like-CL4053 exert antiviral activity against NNS RNA viruses, however the L-isomer, CL4053, has approximately a 1000 fold higher 50 percent inhibitory concentration (IC50) relative to the D-isomer, CL4033, suggesting an alternative antiviral mechanism. In chapter 3 we have elucidated, using VSV as a model NNS RNA virus, mechanisms of how DzNep, CL123, CL4033 and CL4053 exert their antiviral activity in cell culture. Our data indicates that DzNep, CL123 and CL4033 inhibit VSV by preventing viral mRNA cap methylation. A virus selected for CL123-resistance demonstrates cross-resistance against all derivatives, suggesting L-like-CL4053 may function through a similar mechanism of inhibition as the D-like-CL4033

    Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain

    Get PDF
    Nucleocapsid (N) encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays key roles in the replication cycle and is a critical serological marker. Here, we characterize essential biochemical properties of N and describe the utility of these insights in serological studies. We define N domains important for oligomerization and RNA binding and show that N oligomerization provides a high-affinity RNA-binding platform. We also map the RNA-binding interface, showing protection in the N-terminal domain and linker region. In addition, phosphorylation causes reduction of RNA binding and redistribution of N from liquid droplets to loose coils, showing how N-RNA accessibility and assembly may be regulated by phosphorylation. Finally, we find that the C-terminal domain of N is the most immunogenic, based on antibody binding to patient samples. Together, we provide a biochemical description of SARS-CoV-2 N and highlight the value of using N domains as highly specific and sensitive diagnostic markers

    The organisation and delivery of health improvement in general practice and primary care: a scoping study

    Get PDF
    Background This project examines the organisation and delivery of health improvement activities by and within general practice and the primary health-care team. The project was designed to examine who delivers these interventions, where they are located, what approaches are developed in practices, how individual practices and the primary health-care team organise such public health activities, and how these contribute to health improvement. Our focus was on health promotion and ill-health prevention activities. Aims The aim of this scoping exercise was to identify the current extent of knowledge about the health improvement activities in general practice and the wider primary health-care team. The key objectives were to provide an overview of the range and type of health improvement activities, identify gaps in knowledge and areas for further empirical research. Our specific research objectives were to map the range and type of health improvement activity undertaken by general practice staff and the primary health-care team based within general practice; to scope the literature on health improvement in general practice or undertaken by health-care staff based in general practice and identify gaps in the evidence base; to synthesise the literature and identify effective approaches to the delivery and organisation of health improvement interventions in a general practice setting; and to identify the priority areas for research as defined by those working in general practice. Methods We undertook a comprehensive search of the literature. We followed a staged selection process involving reviews of titles and abstracts. This resulted in the identification of 1140 papers for data extraction, with 658 of these papers selected for inclusion in the review, of which 347 were included in the evidence synthesis. We also undertook 45 individual and two group interviews with primary health-care staff. Findings Many of the research studies reviewed had some details about the type, process or location, or who provided the intervention. Generally, however, little attention is paid in the literature to examining the impact of the organisational context on the way services are delivered or how this affects the effectiveness of health improvement interventions in general practice. We found that the focus of attention is mainly on individual prevention approaches, with practices engaging in both primary and secondary prevention. The range of activities suggests that general practitioners do not take a population approach but focus on individual patients. However, it is clear that many general practitioners see health promotion as an integral part of practice, whether as individual approaches to primary or secondary health improvement or as a practice-based approach to improving the health of their patients. Our key conclusion is that there is currently insufficient good evidence to support many of the health improvement interventions undertaken in general practice and primary care more widely. Future Research Future research on health improvement in general practice and by the primary health-care team needs to move beyond clinical research to include delivery systems and be conducted in a primary care setting. More research needs to examine areas where there are chronic disease burdens – cancer, dementia and other disabilities of old age. Reviews should be commissioned that examine the whole prevention pathway for health problems that are managed within primary care drawing together research from general practice, pharmacy, community engagement, etc

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Domain-specific biochemical and serological characterization of SARS-CoV-2 nucleocapsid protein

    Get PDF
    Nucleocapsid proteins are essential for SARS-CoV-2 life cycle. Here, we describe protocols to gather domain-specific insights about essential properties of nucleocapsids. These assays include dynamic light scattering to characterize oligomerization, fluorescence polarization to quantify RNA binding, hydrogen-deuterium exchange mass spectrometry to map RNA binding regions, negative-stain electron microscopy to visualize oligomeric species, interferon reporter assay to evaluate interferon signaling modulation, and a serology assay to reveal insights for improved sensitivity and specificity. These assays are broadly applicable to RNA-encapsidated nucleocapsids. For complete details on the use and execution of this protocol, please refer to Wu et al. (2021)
    corecore