22 research outputs found

    Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine

    Get PDF
    UID/QUI/50006/2019The designed "ATCUN'' motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-beta toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.publishersversionpublishe

    Endosomal mTORC2 Is Required for Phosphoinositide-Dependent AKT Activation in Platelet-Derived Growth Factor-Stimulated Glioma Cells

    No full text
    The serine/threonine kinase AKT is a major effector during phosphatidylinositol 3-kinase (PI3K)-driven cell signal transduction in response to extracellular stimuli. AKT activation mechanisms have been extensively studied; however, the mechanism underlying target of rapamycin complex 2 (mTORC2) phosphorylation of AKT at Ser473 in the cellular endomembrane system remains to be elucidated. Here, we demonstrate that endocytosis is required for AKT activation through phosphorylation at Ser473 via mTORC2 using platelet-derived growth factor-stimulated U87MG glioma cells. mTORC2 components are localized to early endosomes during growth factor activation, and the association of mTORC2 with early endosomes is responsible for the local activation of AKT, which is critical for specific signal transduction through glycogen synthase kinase-3 beta and forkhead box O1/O3 phosphorylation. Furthermore, endosomal phosphoinositide, represented by PtdIns(3,4)P2, provides a binding platform for mTORC2 to phosphorylate AKT Ser473 in endosomes through mammalian Sty1/Spc1-interacting protein (mSIN), a pleckstrin homology domain-containing protein, and is dispensable for AKT phosphorylation at Thr308. This PtdIns(3,4)P2-mediated endosomal AKT activation provides a means to integrate PI3K activated by diverse stimuli to mTORC2 assembly. These early endosomal events induced by endocytosis, together with the previously identified AKT activation by PtdIns(3,4,5)P3, contribute to the strengthening of the transduction of AKT signaling through phosphoinositide

    Diclofenac: A Nonsteroidal Anti-Inflammatory Drug Inducing Cancer Cell Death by Inhibiting Microtubule Polymerization and Autophagy Flux

    No full text
    Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammatory diseases induces cellular toxicity by increasing the production of reactive oxygen species (ROS) and impairing autophagic flux. In this study, we investigated whether diclofenac induces cancer cell death and the mechanism by which diclofenac causes cell death. We observed that diclofenac induces mitotic arrest with a half-maximal effective concentration of 170 μM and cell death with a half-maximal lethal dose of 200 µM during 18-h incubation in HeLa cells. Cellular microtubule imaging and in vitro tubulin polymerization assays demonstrated that treatment with diclofenac elicits microtubule destabilization. Autophagy relies on microtubule-mediated transport and the fusion of autophagic vesicles. We observed that diclofenac inhibits both phagophore movement, an early step of autophagy, and the fusion of autophagosomes and lysosomes, a late step of autophagy. Diclofenac also induces the fragmentation of mitochondria and the Golgi during cell death. We found that diclofenac induces cell death further in combination with 5-fuorouracil, a DNA replication inhibitor than in single treatment in cancer cells. Pancreatic cancer cells, which have high basal autophagy, are particularly sensitive to cell death by diclofenac. Our study suggests that microtubule destabilization by diclofenac induces cancer cell death via compromised spindle assembly checkpoints and increased ROS through impaired autophagy flux. Diclofenac may be a candidate therapeutic drug in certain type of cancers by inhibiting microtubule-mediated cellular events in combination with clinically utilized nucleoside metabolic inhibitors, including 5-fluorouracil, to block cancer cell proliferation

    Irradiated wild-type and Spa mutant Staphylococcus aureus induce anti-S. aureus immune responses in mice which do not protect against subsequent intravenous challenge.

    No full text
    Staphylococcus aureus remains an important human and animal pathogen. Its pathogenicity is determined in part by expression of the Spa-immune subversion protein, neutralising the activity of which provides partial protection in murine models, as does experimental infection with live S. aureus with Spa gene deletions followed by antibiotic-mediated cure in mice. Together, these data raise the question of whether Spa mutant S. aureus might represent a viable vaccine. Here, we find that gamma-irradiated S. aureus strains, both wild-type and null mutant of spa, are immunogenic in mice when administered intramuscularly, eliciting large amounts of anti-S. aureus antibodies, as judged by whole-cell immunoassay on fixed microorganisms. We used an intravenous challenge system to assess vaccine efficacy, the sensitivity of which was increased by studying renal bacterial concentrations in both kidneys. Despite this, protection from intravenous challenge was not observed (mean difference between vaccinated and unvaccinated mice 0.27 log(10) with 95% confidence interval -0.922 to 1.467). Surprisingly, antibody responses elicited against a panel of protective cell surface proteins were very low, indicating that most antibody induced is not protective. Additionally, these data suggest a limited role for irradiated wild-type or spa mutant S. aureus as vaccines
    corecore