953 research outputs found

    Modern Feedback System: A Survey

    Get PDF
    The Feedback given by the stake holders about the current state of performance of any organization is essential for its growth. It provides vital information, which can be used to improve performance. In this way it provides motivation and fuels the continual improvement process. In business, it helps to deliver the best customer experiences. It forms the backbone of success of any institution or individual. It also forms the crust of good supervision in any organization. Feedback system initially started with raising hands, saying yes or no, then it evolved into answering questions through feedback forms, suggestion boxes etc. With the evolution in internet technology, it has now changed into web based, app based feedback systems etc. This paper explains different feedback systems that are currently in use and also explains about advantages and disadvantages of these systems. DOI: 10.17762/ijritcc2321-8169.16047

    Plant Metabolomics: An Emerging Technology for Crop Improvement

    Get PDF
    The astounding ability of plants to make smart decisions in response to environment is evident. As they have evolved a long list of complex and unique processes that involve photosynthesis, totipotency, long-distance signaling, and ability to restore structural and metabolic memory, recognition, and communication via emission of the selected class of volatiles. In recent years, use of metabolite profiling techniques in detection, unambiguous identification, quantification, and rapid analysis of the minute quantity of cellular micromolecules has increased considerably. Metabolomics is key to understand the chemical footprints during different phases of growth and development of plants. To feed the ever-increasing population with limited inputs and in a rapidly changing environment is the biggest challenges that the world agriculture faces today. To achieve the project genetic gains, the breeding strategies employing marker-assisted selection for high-yielding varieties and identifying germplasm resistant to abiotic and biotic stresses are already in vogue. Henceforth, new approaches are needed to discover and deploy agronomically important gene/s that can help crops better withstand weather extremes and growing pest prevalence worldwide. In this context, metabolic engineering technology looks viable option, with immense potential to deliver the future crops

    Buckwheat: Potential Stress-Tolerant Crop for Mid-Hills of Eastern Himalaya under Changing Climate

    Get PDF
    Under changing climate, identification and diversification of cropping systems having higher stress resilience and adaptability for fragile mountain ecosystems of Eastern Himalayan Region (EHR) are paramount. Lesser known and underutilized crop like buckwheat (BW) with year-round cultivation potential and having higher stress tolerance to prevailing stresses (low pH, low moisture) could be a crop of choice for abating malnutrition among hill inhabitants. Proper time of sowing of the crop is between mid-September and mid-December seemingly essential for better grain yield to the tune of 15.0–18.0 q ha−1, and the crop is found suitable to be grown all through the year for higher green biomass (12.6–38.4 q ha−1). Enhanced exudation of low-molecular-weight organic acids (LMWOA) like oxalic acid by buckwheat increased the solubilization of fixed forms of free phosphorus (P) to the extent of 35.0 to 50.0 micro gram per plant in ideal acid soil of the region (P) in acid soil. In addition, relatively increased resilience to moisture stress with improved stress physiological attributes adds more potentiality for enhancing cropping intensity of hill slopes of EHR. Few genotypes namely IC377275 (18.97q ha−1), IC26591 (17.1 qt ha−1), IC14890 (16.32q ha−1), and Himapriya (15.27q ha−1) are emerging as high-yielding types for productive cultivation in acid soils. Studies on the combined effects of acid soil and moisture stress would aid in novel crop improvement of buckwheat in EHR

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida

    No full text
    Abstract Background SET is a conserved protein domain with methyltransferase activity. Several genome and transcriptome data in plant lineage (Archaeplastida) are available but status of SET domain proteins in most of the plant lineage is not comprehensively analysed. Results In this study phylogeny and domain organisation of 506 computationally identified SET domain proteins from 16 members of plant lineage (Archaeplastida) are presented. SET domain proteins of rice and Arabidopsis are used as references. This analysis revealed conserved as well as unique features of SET domain proteins in Archaeplastida. SET domain proteins of plant lineage can be categorised into five classes- E(z), Ash, Trx, Su(var) and Orphan. Orphan class of SET proteins contain unique domains predominantly in early Archaeplastida. Contrary to previous study, this study shows first appearance of several domains like SRA on SET domain proteins in chlorophyta instead of bryophyta. Conclusion The present study is a framework to experimentally characterize SET domain proteins in plant lineage

    Additional file 6: Figure S4. of Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida

    No full text
    Introduction of the domains in the Su(var) SET protein in plant lineages. The black arrow indicates the introduction of the indicated domain in the specifically mentioned Archaeplastida species. (PDF 85 kb

    Additional file 2: Table S2. of Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida

    No full text
    List of the SET domain containing proteins from species considered in the present study with their corresponding sequence id. (PDF 65 kb

    Additional file 5: Figure S3. of Phylogenetic relationship and domain organisation of SET domain proteins of Archaeplastida

    No full text
    Introduction of the domains in the Trx SET protein in plant lineages. The black arrow indicates the introduction of the indicated domain in the specifically mentioned Archaeplastida species. (PDF 221 kb

    Biodegradability study to develop longer life jute geotextiles for road applications

    No full text
    To enhance the life of jute geotextiles (JGTs) for road applications, new types of JGT fabrics were developed following two different routes, viz., (a) rot-proof treatment of 100% JGT fabric and (b) preparation of jute–polypropylene blended JGT fabrics. The biodegradability behavior of these fabrics along with grey JGTs was studied for different durations up to 12 months in three categories of saturated soils, namely, Guwahati Lateritic Red soil, Kolkata Alluvial Silty soil and Andhra Pradesh Black Cotton soil and water separately. Biodegradability assessment was done through residual tensile strength study and microscopic study. The experimentation reveals that rate of biodegradation of the JGTs is different in the three experimental saturated soils and water. Saturated Black Cotton soil was found to be the most detrimental medium. Studies were also carried out to understand this differential degradation behavior of JGTs in different soils. This indicates that the pH of soil media and microbial population growing capability of the respective soils both affect the level of degradation of the JGT fabrics. Jute–synthetic blended JGT is essential for Black Cotton soil road-subgrade, while grey JGT and treated JGT can be used in Lateritic soil and Silty soil, respectively.by Mahuya Ghosh, Guda Rao Venkatappa, Syamal Kanti Chakrabarti, Supriya Pal and Uma Sankar Sarm
    corecore