519 research outputs found
Probing the time dependence of dark energy
A new method to investigate a possible time-dependence of the dark energy
equation of state is proposed. We apply this methodology to two of the most
recent data sets of type Ia supernova (Union2 and SDSS) and the baryon acoustic
oscillation peak at . For some combinations of these data, we show
that there is a clear departure from the standard CDM model at
intermediary redshifts, although a non-evolving dark energy component () cannot be ruled out by these data. The approach developed here may be
useful to probe a possible evolving dark energy component when applied to
upcoming observational data.Comment: 6 pages, 3 figures, LaTe
Modified differentials and basic cohomology for Riemannian foliations
We define a new version of the exterior derivative on the basic forms of a
Riemannian foliation to obtain a new form of basic cohomology that satisfies
Poincar\'e duality in the transversally orientable case. We use this twisted
basic cohomology to show relationships between curvature, tautness, and
vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad
Schottky barrier heights at polar metal/semiconductor interfaces
Using a first-principle pseudopotential approach, we have investigated the
Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100)
junctions, and their dependence on the semiconductor chemical composition and
surface termination. A model based on linear-response theory is developed,
which provides a simple, yet accurate description of the barrier-height
variations with the chemical composition of the semiconductor. The larger
barrier values found for the anion- than for the cation-terminated surfaces are
explained in terms of the screened charge of the polar semiconductor surface
and its image charge at the metal surface. Atomic scale computations show how
the classical image charge concept, valid for charges placed at large distances
from the metal, extends to distances shorter than the decay length of the
metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure
The chemical enrichment of the ICM from hydrodynamical simulations
The study of the metal enrichment of the intra-cluster and inter-galactic
media (ICM and IGM) represents a direct means to reconstruct the past history
of star formation, the role of feedback processes and the gas-dynamical
processes which determine the evolution of the cosmic baryons. In this paper we
review the approaches that have been followed so far to model the enrichment of
the ICM in a cosmological context. While our presentation will be focused on
the role played by hydrodynamical simulations, we will also discuss other
approaches based on semi-analytical models of galaxy formation, also critically
discussing pros and cons of the different methods. We will first review the
concept of the model of chemical evolution to be implemented in any
chemo-dynamical description. We will emphasise how the predictions of this
model critically depend on the choice of the stellar initial mass function, on
the stellar life-times and on the stellar yields. We will then overview the
comparisons presented so far between X-ray observations of the ICM enrichment
and model predictions. We will show how the most recent chemo-dynamical models
are able to capture the basic features of the observed metal content of the ICM
and its evolution. We will conclude by highlighting the open questions in this
study and the direction of improvements for cosmological chemo-dynamical models
of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 18; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
IceCube - the next generation neutrino telescope at the South Pole
IceCube is a large neutrino telescope of the next generation to be
constructed in the Antarctic Ice Sheet near the South Pole. We present the
conceptual design and the sensitivity of the IceCube detector to predicted
fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete
simulation of the detector design has been used to study the detector's
capability to search for neutrinos from sources such as active galaxies, and
gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth
International Conference on Neutrino Physics and Astrophysics, Munich 200
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
- …