3,351 research outputs found

    Biological, Molecular and Phiysiological Characterization of Four Soybean mosaic virus Isolates Present in Argentine Soybean Crops

    Get PDF
    Soybean mosaic virus (SMV) causes systemic infections in soybean plants, leading to chlorotic mosaic and producing significant yield losses. The virus is widely distributed in all soybean production areas in the world. In Argentina, three geographical isolates were identified: Marcos Juárez (MJ), Manfredi (M), and North Western Argentina (NOA), and another isolate named “Planta Vinosa” (PV), which causes severe necrosis symptoms in some cultivars. Here, the biological, molecular and physiological characterization of these isolates was performed for the first time. Three of the four isolates showed a low genetic divergence in the evaluated genes (P1, CI and CP). Although SMV-NOA and SMV-PV had high homology at the sequence level, they showed wide differences in pathogenicity, seed mottling and the ability of transmission by seeds or aphids, as well as in physiological effects. SMV-NOA caused early alterations (before symptom appearance, BS) in ΦPSII and MDA content in leaves with respect to the other isolates. After the appearance of macroscopic symptoms (late symptoms, LS), SMV-M caused a significant increase in the content of MDA, total soluble sugars, and starch with respect to the other isolates. Thus, early alterations of ΦPSII and soluble sugars might have an impact on late viral symptoms. Likewise, SMV-MJ developed more severe symptoms in the susceptible Davis cultivar than in DM 4800. Therefore, our results show differences in genome, biological properties and physiological effects among SMV isolates as well as different interactions of SMV-MJ with two soybean cultivars.Instituto de Patología VegetalFil: Maugeri Suarez, M. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN); ArgentinaFil: Rodriguez, Marianela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales; ArgentinaFil: Rodriguez, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Estudios Agropecuarios (UDEA) ; ArgentinaFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Laguna, Irma Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Laguna, Irma Graciela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Rodriguez Pardina, Patricia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Rodriguez Pardina, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentin

    Detection, rescue, and mapping of mutations in the adenovirus DNA binding protein gene

    Full text link

    Genomic duplication and translocation of reactivation transactivator and bZIP-homolog genes is a conserved event in alcelaphine herpesvirus 1.

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of ruminants, including cattle. The strain C500 has been cloned as an infectious, pathogenic bacterial artificial chromosome (BAC) that is used to study MCF. Although AlHV-1 infection can be established in cell culture, multiple passages in vitro cause a loss of virulence associated with rearrangements of the viral genome. Here, sequencing of the BAC clone showed that the long unique region (LUR) of the genome is nearly identical to that of the previously sequenced strain from which the BAC was derived, and identified the duplication and translocation of a region from within LUR, containing the entire coding sequences of ORF50-encoding reactivation transactivator Rta and A6-encoding bZIP protein genes. The duplicated region was further located to a position within the terminal repeat (TR) and its deletion resulted in lower ORF50 expression levels and reduced viral fitness. Finally, the presence of a similar but not identical duplication and translocation containing both genes was found in AlHV-1 strain WC11. These results indicate that selection pressure for enhanced viral fitness may drive the duplication of ORF50 and A6 in AlHV-1.Peer reviewe

    Quantum entanglement with acousto-optic modulators: 2-photon beatings and Bell experiments with moving beamsplitters

    Get PDF
    We present an experiment testing quantum correlations with frequency shifted photons. We test Bell inequality with 2-photon interferometry where we replace the beamsplitters by acousto-optic modulators, which are equivalent to moving beamsplitters. We measure the 2-photon beatings induced by the frequency shifts, and we propose a cryptographic scheme in relation. Finally, setting the experiment in a relativistic configuration, we demonstrate that the quantum correlations are not only independent of the distance but also of the time ordering between the two single-photon measurements.Comment: 14 pages, 16 figure

    Human cytomegalovirus protein RL1 degrades the antiviral factor SLFN11 via recruitment of the CRL4 E3 ubiquitin ligase complex.

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion

    Whole-genome approach to assessing human cytomegalovirus dynamics in transplant patients undergoing antiviral therapy

    Get PDF
    Human cytomegalovirus (HCMV) is the most frequent cause of opportunistic viral infection following transplantation. Viral factors of potential clinical importance include the selection of mutants resistant to antiviral drugs and the occurrence of infections involving multiple HCMV strains. These factors are typically addressed by analyzing relevant HCMV genes by PCR and Sanger sequencing, which involves independent assays of limited sensitivity. To assess the dynamics of viral populations with high sensitivity, we applied high-throughput sequencing coupled with HCMV-adapted target enrichment to samples collected longitudinally from 11 transplant recipients (solid organ, n=9, and allogeneic hematopoietic stem cell, n=2). Only the latter presented multiple-strain infections. Four cases presented resistance mutations (n=6), two (A594V and L595S) at high (100%) and four (V715M, 32 V781I, A809V and T838A) at low (<25%) frequency. One allogeneic hematopoietic stem cell transplant recipient presented up to four resistance mutations, each at low frequency. The use of high throughput sequencing to monitor mutations and strain composition in people at risk of HCMV disease is of potential value in helping clinicians implement the most appropriate therapy

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu
    corecore