18 research outputs found

    Accretion-Induced Lithium Line Enhancements in Classical T Tauri Stars: RW Aur

    Get PDF
    It is widely accepted that much of the stochastic variability of T Tauri stars is due to accretion by a circumstellar disk. The emission line spectrum as well as the excess continuum emission are common probes of this process. In this communication, we present additional probes of the circumstellar environment in the form of resonance lines of low ionization potential elements. Using a set of 14 high resolution echelle observations of the classical T Tauri star (CTTS), RW Aur, taken between 1986 and 1996, we carefully measure the continuum veiling at each epoch by comparing more than 500 absorption lines with those of an appropriate template. This allows us to accurately subtract out the continuum emission and to recover the underlying photospheric spectrum. In doing so, we find that selected photospheric lines are enhanced by the accretion process, namely the resonance lines of LiI and KI. A resonance line of TiI and a low excitation potential line of CaI also show weak enhancements. Simple slab models and computed line bisectors lead us to propose that these line enhancements are markers of cool gas at the beginning of the accretion flow which provides an additional source of line opacity. These results suggest that published values of surface lithium abundances of classical T Tauri stars are likely to be overestimated. This would account for the various reports of surface lithium abundances in excess of meteoritic values among the extreme CTTS. Computing LTE lithium abundances of RW Aur in a low and then high accretion state yields abundances which vary by one order of magnitude. The low accretion state lithium abundance is consistent with theoretical predictions for a star of this age and mass while the high accretion state spectrum yields a super-meteoritic lithium abundance.Comment: 28 pages, 8 figures, accepted by Ap

    On the photometric behaviour of the Pleiades K dwarf HII 1883

    Get PDF
    Photometric data from a variety of sources have been analysed to check if effects of differential rotation or evolutionary spin-down can be detected in HII 1883. Although the same light- curve form may be maintained for several years, shape changes and phase shifts do not allow sufficiently long time-bases for the required accuracy of period determination. One form of light-curve may have a tendency to recur with phase coherence. Using this observation allows determination of three potentially more accurate periods relative to the one previously established, but the choice of any revised value is subject to imprecise knowledge of the integer number of cycles over the time-base. The phase-locked tendency, if confirmed, requires some mechanism for spots to recur at a given longitude. A suggestion of the star being a magnetic oblique rotator is mooted but other observational and theoretical support would be required to promote this notion further. Evidence of small short-term changes occurring over just a few periods is explored. Comparison of the contemporaneous light- curve with the H α line emission RV variations reveals a phase difference of 90°, so making a connection that the disturbances producing the photometric signals have the same location as those generating at least some part of the H α emission. Finally a multi-spot model is presented to mimic the observed light-curves

    RW Aur A from the X-Wind Point of View: General Features

    Full text link
    In this paper, the RW Aur A microjet is studied from the point of view of X-wind models. The archived HST/STIS spectra of optical forbidden lines [O I], [S II], and [N II] from RW Aur A, taken in Cycle 8 with seven parallel slits along the jet axis, spaced at 0".07 apart, were analyzed. Images, position-velocity diagrams, and line ratios among the species were constructed, and compared with synthetic observations generated by selected solutions of the X-wind. Prominent features arising in a steady state X-wind could be identified within the convolved images, full-widths at half maxima and high-velocity peaks on both of the redshifted and blueshifted jets. The well-known asymmetric velocity profiles of the opposite jets are built into the selected models. We discuss model selections within the existing uncertainties of stellar parameters and inclination angle of the system. In this framework, the mass-loss rates that were inferred to be decreasing along the jet axis in the literature are the results of slowly decreasing excitation conditions and electron density profiles. Despite the apparent asymmetry in terminal velocities, line intensities and mass-loss rates, the average linear momenta from the opposite sides of the jet are actually balanced. These previously hard-to-explain features of the asymmetric RW Aur A jet system now find a different but self-consistent interpretation within the X-wind framework.Comment: 31 pages, 9 figures, 5 tables; accepted for publication in ApJ (Send correspondence to: [email protected]

    An assessment of Li abundances in weak-lined and classical T Tauri stars of the Taurus-Auriga association

    Full text link
    Accurate measurements of lithium abundances in young low-mass stars provide an independent and reliable age diagnostics. Previous studies of nearby star forming regions have identified significant numbers of Li-depleted stars,often at levels inconsistent with the ages indicated by their luminosity. We aim at a new and accurate analysis of Li abundances in a sample of ~100 pre-main sequence stars in Taurus-Auriga using a homogeneous and updated set of stellar parameters and model atmospheres appropriate for the spectral types of the sample stars.We compute Li abundances using published values of the equivalent widths of the Li 6708 A doublet obtained from medium/high resolution spectra. We find that the number of significantly Li-depleted stars in Taurus-Auriga is greatly reduced with respect to earlier results. Only 13 stars have abundances lower than the interstellar value by a factor of 5 or greater. All of them are weak-lined T Tauri stars drawn from X-ray surveys; with the exception of four stars located near the L1551 and L1489 dark clouds, all the Li-depleted stars belong to the class of dispersed low-mass stars, distributed around the main sites of current star formation. If located at the distance of Taurus-Auriga, the stellar ages implied by the derived Li abundances are in the range 3-30 Myr, greater than the bulk of the Li-rich population with implication on the star formation history of the region. In order to derive firm conclusions about the fraction of Li-depleted stars of Taurus-Auriga, Li measurements of the remaining members of the association should be obtained, in particular of the group of stars that fall in the Li-burning region of the HR diagram.Comment: Accepted for publication in Astronomy & Astrophysics. 20 pages, 5 figure

    HST/STIS observations of the RW Aurigae bipolar jet: mapping the physical parameters close to the source

    Full text link
    We present the results of new spectral diagnostic investigations applied to high-resolution long-slit spectra of the RW Aur bipolar jet obtained with HST/STIS. The spectra include the forbidden doublets [O I] 6300,6363 \AA, [S II] 6716,6731 \AA, and [N II] 6548, 6583 \AA that we utilized to determine electron density, electron temperature, hydrogen ionisation fraction, total hydrogen density, radial velocity and the mass outflow rate. We were able to extract the parameters as far as 3".9 in the red- and 2".1 in the blueshifted beam. The RW Aur jet appears to be the second densest outflow from a T Tauri star studied so far, but its other properties are quite similar to those found in other jets from young stars. The overall trend of the physical parameters along the first few arcseconds of the RW Aur jet is similar to that of HH 30 and DG Tau and this can reflect analogies in the mechanisms operating in that region, suggesting the same engine is accelerating the jets in the T Tauri stars with outflows. Our study of the RW Aur jet indicates for the first time that, despite the detected marked asymmetries in physical and kinematic properties between the two lobes, the mass outflow rates in the two lobes are similar. This appears to indicate that the central engine has constraining symmetries on both sides of the system, and that the observed asymmetries are probably due to different environmental conditions.Comment: 24 pages, 10 figures, accepted for publication in the Astronomy and Astrophysic

    Eclipses by circumstellar material in the T Tauri star AA Tau. II. Evidence for non-stationary magnetospheric accretion

    Full text link
    We report the results of a synoptic study of the photometric and spectroscopic variability of the classical T Tauri star AA Tau on timescales ranging from a few hours to several weeks. Emission lines show both infall and outflow signatures and are well reproduced by magnetospheric accretion models with moderate mass accretion rates and high inclinations. The veiling shows variations that indicate the presence of 2 rotationally modulated hot spots corresponding to the two magnetosphere poles. It correlates well with the HeI line flux, with B-V and the V excess flux. We have indications of a time delay between the main emission lines and veiling, the lines formed farther away preceding the veiling changes. The time delay we measure is consistent with accreted material propagating downwards the accretion columns at free fall velocity from a distance of about 8 Rstar. We also report periodic radial velocity variations of the photospheric spectrum which might point to the existence of a 0.02 Msun object orbiting the star at a distance of 0.08 AU. During a few days, the variability of the system was strongly reduced and the line fluxes and veiling severely depressed. We argue that this episode of quiescence corresponds to the temporary disruption of the magnetic configuration at the disk inner edge. The radial velocity variations of inflow and outflow diagnostics in the Halpha profile yield further evidence for large scale variations of the magnetic configuration on a timescale of a month. These results may provide the first clear evidence for large scale instabilities developping in T Tauri magnetospheres as the magnetic field lines are twisted by differential rotation between the star and the inner disk.Comment: 25 pages, Astron. Astrophys., in pres
    corecore