436 research outputs found
Combined household and GIS analysis of farmer strategies: an application to feeding practices on smallholder Kenyan dairy farms
Traditional studies of agricultural technology adoption have long been constrained by a limited ability to include spatially-differentiated data. Typically, crude proxies or location dummy variables are used to approximate spatial effects. GIS tools, however, now allow spatially explicit data to be included in household econometric models of technology adoption. This paper describes a study that combined GIS and survey variables to examine the cattle feeding strategies on farms in highland Kenya. Data from a large geo-referenced household survey were combined with GIS-derived variables to comprehensively evaluate the spatial, agro-ecological, market and farm resource factors that determine variability of feeding strategies on smallholder dairy farms. Roads, urban populations, milk collection and processing facilities were digitised, and integrated with spatial coverages of agro-ecology. These were then combined, using econometric methods, to quantify the main spatial and local determinants of the probability of adoption of: a) stall feeding or zero-grazing, and b) planted fodder in the form of Napier grass. The results show the influence not only of agro-ecology, but also of market infrastructure and support services on the adoption of improved feeding strategies. A comparison of predicted uptake using GIS and household variables shows that after first calibrating GIS-derived variables through a household survey, broad but reliable predictions of technology uptake in other areas may be possible
Recommended from our members
Proposed PCB congener groupings for epidemiological studies
Polychlorinated biphenyls (PCBs) have been the target of many epidemiological studies because of their toxic potential and widespread prevalence in the environment. Advances in analytic techniques have made it possible to distinguish routinely among the 209 different congeners, which vary widely in their biological properties. We propose here a classification system for the most commonly detected congeners. Group 1 (potentially estrogenic, weak phenobarbital inducers); Group 2 (potentially antiestrogenic and immunotoxic, dioxinlike); and Group 3 (phenobarbital, CYP1A and CYP2B inducers, biologically persistent). Group 2 is further subdivided according to non- and mono-ortho substituted vs. di-ortho substituted, in analogy with toxicity of dioxin congeners
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
SUpporting well-being through PEeR-Befriending (SUPERB) trial: an exploration of fidelity in peer-befriending for people with aphasia
Assessing the evolution of severely brain-injured patients with disorders of consciousness (DOC) with current tools like the Glasgow Outcome Scale-Extended (GOS-E) remains a challenge. At the bedside, the most reliable diagnostic tool is currently the Coma Recovery Scale-Revised. The CRS-R distinguishes patients with unresponsive wakefulness syndrome (UWS) from patients in minimally conscious state (MCS) and patients who have emerged from MCS (EMCS). This international multi-centric study aims to validate a phone outcome questionnaire (POQ) based on the CRS-R and compare it to the CRS-R performed at the bedside and to the GOS-E which evaluates the level of disability and assigns patient’s in outcomes categories. The POQ will allow clinicians to probe the evolution of patient’s state of consciousness based on caregivers feedback. This research project is part of the International Brain Injury Association, Disorders of Consciousness-Special Interest Group (DOCSIG) and DOCMA consortium
Exposure to fogger trucks and breast cancer incidence in the Long Island Breast Cancer Study Project: a case-control study
Background: Few studies have supported an association between breast cancer and DDT, usually assessed with biomarkers that cannot discern timing of exposure, or differentiate between the accumulation of chronic low-dose versus acute high-dose exposures in the past. Previous studies suggest that an association may be evident only among women exposed to DDT during biologically susceptible windows, or among those diagnosed with estrogen receptor/progesterone receptor-positive (ER+PR+) breast cancer subtypes. Self-reported acute exposure to a fogger truck, which sprayed DDT prior to 1972, was hypothesized to increase the risk of breast cancer, particularly among women exposed at a young age or diagnosed with ER+PR+ breast cancer. Methods: We examined these possibilities in the Long Island Breast Cancer Study Project (LIBCSP) (1,508 cases, 1,556 controls), which included exposure assessment by structured questionnaire and serum samples collected between 1996–1998, using adjusted logistic and polytomous regression to estimate ORs and 95% CIs. Results: Women with ER+PR+ breast cancer had a 44% increased odds of ever seeing a pre-1972 fogger truck compared to other subtypes (OR = 1.44; 95% CI 1.08-1.93). However, there was little variation in the observed increase in breast cancer risk when considering all women who reported seeing a pre-1972 fogger truck at their residence (OR = 1.16; 95% CI 0.98, 1.37), or during hypothesized susceptible windows. Self-reported acute exposure was not correlated with serum concentrations, a biomarker of long-term exposure. Conclusions: These findings support the hypothesis that seeing a fogger truck, a proxy measure for acute DDT exposure, may be associated with ER+PR+ tumors, the most commonly diagnosed breast cancer subtype among American women
Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation
<p>Abstract</p> <p>Background</p> <p>The treatment of patients with aortic regurgitation (AR) or mitral regurgitation (MR) relies on the accurate assessment of the severity of the regurgitation as well as its effect on left ventricular (LV) size and function. Cardiovascular Magnetic Resonance (CMR) is an excellent tool for quantifying regurgitant volumes as well as LV size and function. The 2008 AHA/ACC management guidelines for the therapy of patients with AR or MR only describe LV size in terms of linear dimensions (i.e. end-diastolic and end-systolic dimension). LV volumes that correspond to these linear dimensions have not been published in the peer-reviewed literature. The purpose of this study is to determine the effect of regurgitant volume on LV volumes and chamber dimensions in patients with isolated AR or MR and preserved LV function.</p> <p>Methods</p> <p>Regurgitant volume, LV volume, mass, linear dimensions, and ejection fraction, were determined in 34 consecutive patients with isolated AR and 23 consecutive patients with MR and no other known cardiac disease.</p> <p>Results</p> <p>There is a strong, linear relationship between regurgitant volume and LV end-diastolic volume index (aortic regurgitation r<sup>2 </sup>= 0.8, mitral regurgitation r<sup>2 </sup>= 0.8). Bland-Altman analysis of regurgitant volume shows little interobserver variation (AR: 0.6 ± 4 ml; MR 4 ± 6 ml). The correlation is much poorer between regurgitant volume and commonly used clinical linear measures such as end-systolic dimension (mitral regurgitation r<sup>2 </sup>= 0.3, aortic regurgitation r<sup>2 </sup>= 0.5). For a given regurgitant volume, AR causes greater LV enlargement and hypertrophy than MR.</p> <p>Conclusion</p> <p>CMR is an accurate and robust technique for quantifying regurgitant volume in patients with AR or MR. Ventricular volumes show a stronger correlation with regurgitant volume than linear dimensions, suggesting LV volumes better reflect ventricular remodeling in patients with isolated mitral or aortic regurgitation. Ventricular volumes that correspond to published recommended linear dimensions are determined to guide the timing of surgical intervention.</p
The differential impact of intraventricular and interventricular dyssynchrony on left ventricular remodeling and function in patients with isolated left bundle branch block
A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
Common Avian Infection Plagued the Tyrant Dinosaurs
Abstract Background: Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name 'Sue') has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
- …
