436 research outputs found

    Combined household and GIS analysis of farmer strategies: an application to feeding practices on smallholder Kenyan dairy farms

    Get PDF
    Traditional studies of agricultural technology adoption have long been constrained by a limited ability to include spatially-differentiated data. Typically, crude proxies or location dummy variables are used to approximate spatial effects. GIS tools, however, now allow spatially explicit data to be included in household econometric models of technology adoption. This paper describes a study that combined GIS and survey variables to examine the cattle feeding strategies on farms in highland Kenya. Data from a large geo-referenced household survey were combined with GIS-derived variables to comprehensively evaluate the spatial, agro-ecological, market and farm resource factors that determine variability of feeding strategies on smallholder dairy farms. Roads, urban populations, milk collection and processing facilities were digitised, and integrated with spatial coverages of agro-ecology. These were then combined, using econometric methods, to quantify the main spatial and local determinants of the probability of adoption of: a) stall feeding or zero-grazing, and b) planted fodder in the form of Napier grass. The results show the influence not only of agro-ecology, but also of market infrastructure and support services on the adoption of improved feeding strategies. A comparison of predicted uptake using GIS and household variables shows that after first calibrating GIS-derived variables through a household survey, broad but reliable predictions of technology uptake in other areas may be possible

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    SUpporting well-being through PEeR-Befriending (SUPERB) trial: an exploration of fidelity in peer-befriending for people with aphasia

    Get PDF
    Assessing the evolution of severely brain-injured patients with disorders of consciousness (DOC) with current tools like the Glasgow Outcome Scale-Extended (GOS-E) remains a challenge. At the bedside, the most reliable diagnostic tool is currently the Coma Recovery Scale-Revised. The CRS-R distinguishes patients with unresponsive wakefulness syndrome (UWS) from patients in minimally conscious state (MCS) and patients who have emerged from MCS (EMCS). This international multi-centric study aims to validate a phone outcome questionnaire (POQ) based on the CRS-R and compare it to the CRS-R performed at the bedside and to the GOS-E which evaluates the level of disability and assigns patient’s in outcomes categories. The POQ will allow clinicians to probe the evolution of patient’s state of consciousness based on caregivers feedback. This research project is part of the International Brain Injury Association, Disorders of Consciousness-Special Interest Group (DOCSIG) and DOCMA consortium

    Exposure to fogger trucks and breast cancer incidence in the Long Island Breast Cancer Study Project: a case-control study

    Get PDF
    Background: Few studies have supported an association between breast cancer and DDT, usually assessed with biomarkers that cannot discern timing of exposure, or differentiate between the accumulation of chronic low-dose versus acute high-dose exposures in the past. Previous studies suggest that an association may be evident only among women exposed to DDT during biologically susceptible windows, or among those diagnosed with estrogen receptor/progesterone receptor-positive (ER+PR+) breast cancer subtypes. Self-reported acute exposure to a fogger truck, which sprayed DDT prior to 1972, was hypothesized to increase the risk of breast cancer, particularly among women exposed at a young age or diagnosed with ER+PR+ breast cancer. Methods: We examined these possibilities in the Long Island Breast Cancer Study Project (LIBCSP) (1,508 cases, 1,556 controls), which included exposure assessment by structured questionnaire and serum samples collected between 1996–1998, using adjusted logistic and polytomous regression to estimate ORs and 95% CIs. Results: Women with ER+PR+ breast cancer had a 44% increased odds of ever seeing a pre-1972 fogger truck compared to other subtypes (OR = 1.44; 95% CI 1.08-1.93). However, there was little variation in the observed increase in breast cancer risk when considering all women who reported seeing a pre-1972 fogger truck at their residence (OR = 1.16; 95% CI 0.98, 1.37), or during hypothesized susceptible windows. Self-reported acute exposure was not correlated with serum concentrations, a biomarker of long-term exposure. Conclusions: These findings support the hypothesis that seeing a fogger truck, a proxy measure for acute DDT exposure, may be associated with ER+PR+ tumors, the most commonly diagnosed breast cancer subtype among American women

    Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The treatment of patients with aortic regurgitation (AR) or mitral regurgitation (MR) relies on the accurate assessment of the severity of the regurgitation as well as its effect on left ventricular (LV) size and function. Cardiovascular Magnetic Resonance (CMR) is an excellent tool for quantifying regurgitant volumes as well as LV size and function. The 2008 AHA/ACC management guidelines for the therapy of patients with AR or MR only describe LV size in terms of linear dimensions (i.e. end-diastolic and end-systolic dimension). LV volumes that correspond to these linear dimensions have not been published in the peer-reviewed literature. The purpose of this study is to determine the effect of regurgitant volume on LV volumes and chamber dimensions in patients with isolated AR or MR and preserved LV function.</p> <p>Methods</p> <p>Regurgitant volume, LV volume, mass, linear dimensions, and ejection fraction, were determined in 34 consecutive patients with isolated AR and 23 consecutive patients with MR and no other known cardiac disease.</p> <p>Results</p> <p>There is a strong, linear relationship between regurgitant volume and LV end-diastolic volume index (aortic regurgitation r<sup>2 </sup>= 0.8, mitral regurgitation r<sup>2 </sup>= 0.8). Bland-Altman analysis of regurgitant volume shows little interobserver variation (AR: 0.6 ± 4 ml; MR 4 ± 6 ml). The correlation is much poorer between regurgitant volume and commonly used clinical linear measures such as end-systolic dimension (mitral regurgitation r<sup>2 </sup>= 0.3, aortic regurgitation r<sup>2 </sup>= 0.5). For a given regurgitant volume, AR causes greater LV enlargement and hypertrophy than MR.</p> <p>Conclusion</p> <p>CMR is an accurate and robust technique for quantifying regurgitant volume in patients with AR or MR. Ventricular volumes show a stronger correlation with regurgitant volume than linear dimensions, suggesting LV volumes better reflect ventricular remodeling in patients with isolated mitral or aortic regurgitation. Ventricular volumes that correspond to published recommended linear dimensions are determined to guide the timing of surgical intervention.</p

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Common Avian Infection Plagued the Tyrant Dinosaurs

    Get PDF
    Abstract Background: Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name &apos;Sue&apos;) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    corecore