29 research outputs found

    Catechol-O-Methyltransferase (COMT) Val(108/158 )Met polymorphism does not modulate executive function in children with ADHD

    Get PDF
    BACKGROUND: An association has been observed between the catechol-O-methyltransferase (COMT) gene, the predominant means of catecholamine catabolism within the prefrontal cortex (PFC), and neuropsychological task performance in healthy and schizophrenic adults. Since several of the cognitive functions typically deficient in children with Attention Deficit Hyperactivity Disorder (ADHD) are mediated by prefrontal dopamine (DA) mechanisms, we investigated the relationship between a functional polymorphism of the COMT gene and neuropsychological task performance in these children. METHODS: The Val(108/158 )Met polymorphism of the COMT gene was genotyped in 118 children with ADHD (DSM-IV). The Wisconsin Card Sorting Test (WCST), Tower of London (TOL), and Self-Ordered Pointing Task (SOPT) were employed to evaluate executive functions. Neuropsychological task performance was compared across genotype groups using analysis of variance. RESULTS: ADHD children with the Val/Val, Val/Met and Met/Met genotypes were similar with regard to demographic and clinical characteristics. No genotype effects were observed for WCST standardized perseverative error scores [F(2,97 )= 0.67; p > 0.05], TOL standardized scores [F(2,99 )= 0.97; p > 0.05], and SOPT error scores [F(2,108 )= 0.62; p > 0.05]. CONCLUSIONS: Contrary to the observed association between WCST performance and the Val(108/158 )Met polymorphism of the COMT gene in both healthy and schizophrenic adults, this polymorphism does not appear to modulate executive functions in children with ADHD

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    Efficacy of methylphenidate in children with attention-deficit hyperactivity disorder and learning disabilities: a randomized crossover trial

    No full text
    Objective: To determine whether children with attention-deficit hyperactivity disorder (ADHD) and learning disabilities respond differently to methylphenidate (MPH) compared with children with ADHD only. Methods: We conducted a prospective, double-blind, placebo-controlled, randomized, 2-week crossover trial of MPH, during which response to MPH was assessed. Learning ability was appraised using the Wide Range Achievement Test, Revised (WRAT-R), for English-speaking students and the Test de rendement pour francophones for French-speaking students. The study was conducted at the Douglas Hospital, a McGill University–affiliated teaching hospital in Montréal. Ninety-five children, aged 6–12 years, who met the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV), criteria for ADHD participated in the study, which ran from 2001 to 2004. The outcome measure used was the Consensus Clinical Response, an indicator of the degree of clinical improvement shown when taking MPH. Results: The proportion of children with learning disabilities who responded to MPH (55%) was significantly smaller (χ(2)1 = 4.5, p = 0.034) than the proportion of children without learning disabilities who responded adequately to MPH (75%). This difference was mainly because of children with mathematics disability being particularly unresponsive to MPH (χ(2)1 = 4.5, p = 0.034). Children with reading disability did not show this pattern of poor response (χ(2)1 = 1.0, p = 0.33). Conclusion: Children with ADHD and comorbid learning disability tended to respond more poorly to MPH. In particular, children with disability in mathematics responded less to MPH than those without disability in mathematics. Additional therapy may be indicated for this group of patients

    Catechol-O-Methyltransferase (COMT) Val108/158 Met polymorphism does not modulate executive function in children with ADHD

    No full text
    BACKGROUND:An association has been observed between the catechol-O-methyltransferase (COMT) gene, the predominant means of catecholamine catabolism within the prefrontal cortex (PFC), and neuropsychological task performance in healthy and schizophrenic adults. Since several of the cognitive functions typically deficient in children with Attention Deficit Hyperactivity Disorder (ADHD) are mediated by prefrontal dopamine (DA) mechanisms, we investigated the relationship between a functional polymorphism of the COMT gene and neuropsychological task performance in these children.METHODS:The Val108/158 Met polymorphism of the COMT gene was genotyped in 118 children with ADHD (DSM-IV). The Wisconsin Card Sorting Test (WCST), Tower of London (TOL), and Self-Ordered Pointing Task (SOPT) were employed to evaluate executive functions. Neuropsychological task performance was compared across genotype groups using analysis of variance.RESULTS:ADHD children with the Val/Val, Val/Met and Met/Met genotypes were similar with regard to demographic and clinical characteristics. No genotype effects were observed for WCST standardized perseverative error scores [F2,97 = 0.67; p > 0.05], TOL standardized scores [F2,99 = 0.97; p > 0.05], and SOPT error scores [F2,108 = 0.62; p > 0.05].CONCLUSIONS:Contrary to the observed association between WCST performance and the Val108/158 Met polymorphism of the COMT gene in both healthy and schizophrenic adults, this polymorphism does not appear to modulate executive functions in children with ADHD

    The Orphan Receptor GPR88 Controls Impulsivity and Is a Risk Factor for Attention-Deficit/Hyperactivity Disorder.

    No full text
    International audienceThe neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD). In the mouse, we tested Gpr88 knockout mice in three behavioral paradigms, best translatable between rodents and humans, and found higher motor impulsivity and reduced attention together with the reported hyperactivity. Atomoxetine, a typical ADHD drug, reduced impulsivity in mutant mice. Conditional Gpr88 knockout mice in either D1R-type or D2R-type medium spiny neurons revealed distinct implications of the two receptor populations in waiting and stopping impulsivity. Thus, animal data demonstrate that deficient GPR88 activity causally promotes ADHD-like behaviors, and identify circuit mechanisms underlying GPR88-regulated impulsivity. In humans, we performed a family-based genetic study including 567 nuclear families with DSM-IV diagnosis of ADHD. There was a minor association for SNP rs2036212 with diagnosis, treatment response and cognition. A stronger association was found for SNP rs2809817 upon patient stratification, suggesting that the T allele is a risk factor when prenatal stress is involved. Human data therefore identify GPR88 variants associated with the disease, and highlight a potential role of life trajectories to modulate GPR88 function. Overall, animal and human data concur to suggest that GPR88 signaling should be considered a key factor for diagnostic and treatment of ADHD

    Dopamine transporter 3'UTR VNTR genotype is a marker of performance on executive function tasks in children with ADHD

    Get PDF
    BackgroundAttention-Deficit/Hyperactivity Disorder (ADHD) is a heterogeneous disorder from both clinical and pathogenic viewpoints. Executive function deficits are considered among the most important pathogenic pathways leading to ADHD and may index part of the heterogeneity in this disorder. MethodsTo investigate the relationship between the dopamine transporter gene (SLC6A3) 3'-UTR VNTR genotypes and executive function in children with ADHD, 196 children diagnosed with ADHD were sequentially recruited, genotyped, and tested using a battery of three neuropsychological tests aimed at assessing the different aspects of executive functioning. Results: Taking into account a correction for multiple comparisons, the main finding of this study is a significant genotype effect on TOL (F = 6.902, p = 0.009) and FFDI performances (F = 7.125, p = 0.008) as well as strong trends on SOPT error scores (F = 4,996 p = 0.026) and Digit Span performance (F = 6.28, p = 0.023). Children with the 9/10 genotype had poorer performance on all four measures compared to children with the 10/10 genotype. No effect of genotype on WCST measures of performance was detected. ConclusionResults are compatible with the view that SLC6A3 genotype may modulate components of executive function performance in children with ADHD.The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production

    Noncovalent Interaction of Methylene Blue with Carbon Nanotubes: Theoretical and Mass Spectrometry Characterization

    No full text
    Noncovalent interaction of methylene blue dye cation (MB<sup>+</sup>) with single walled carbon nanotubes (CNT) is characterized by molecular dynamics (MD) simulation, quantum chemical calculations, and laser desorption/ionization (LDI) mass spectrometry. The MD simulation of the (MB<sup>+</sup>)<sub><i>n</i></sub>–CNT (<i>n</i> = 1–10) complexes in water demonstrates that the MB<sup>+</sup> cations are adsorbed on the nanotube surface in the monomeric form. MD reveals both parallel and perpendicular orientations of the MB<sup>+</sup> tricyclic plane in relation to the long axis of CNT when placed in the water environment. The interaction energy between the components of the complex in the perpendicular conformation, as determined by quantum chemical calculations at the DFT/M05-2X/6-31++G­(d,p) level of theory, explains why the bending of the MB<sup>+</sup> cation at the sulfur atom weakens the π-system of bonds and allows for the perpendicular orientation to occur. It is also found that the adsorbed MB<sup>+</sup> induces positive electrostatic potential around the adjacent semicylindrical segment of the nanotube. The mainly monomolecular adsorption of the MB<sup>+</sup> cations at the CNT surface leads to the absence in the LDI mass spectra of (MB<sup>+</sup>)<sub><i>n</i></sub>–CNT of features corresponding to products of the reduction of MB<sup>+</sup> commonly observed in the LDI mass spectra of crystalline dyes
    corecore