46 research outputs found

    Bisphosphonates in multicentric osteolysis, nodulosis and arthropathy (MONA) spectrum disorder - an alternative therapeutic approach.

    Get PDF
    Multicentric osteolysis, nodulosis and arthropathy (MONA) spectrum disorder is a rare inherited progressive skeletal disorder caused by mutations in the matrix metalloproteinase 2 (MMP2) gene. Treatment options are limited. Herein we present successful bisphosphonate therapy in three affected patients. Patients were treated with bisphosphonates (either pamidronate or zoledronate) for different time periods. The following outcome variables were assessed: skeletal pain, range of motion, bone densitometry, internal medical problems as well as neurocognitive function. Skeletal pain was dramatically reduced in all patients soon after initiation of therapy and bone mineral density increased. Range of motion did not significantly improve. One patient is still able to walk with aids at the age of 14 years. Neurocognitive development was normal in all patients. Bisphosphonate therapy was effective especially in controlling skeletal pain in MONA spectrum disorder. Early initiation of treatment seems to be particularly important in order to achieve the best possible outcome

    FRA2A is a CGG repeat expansion associated with silencing of AFF3

    Get PDF
    Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5-12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship

    Choroid plexus tumours

    Get PDF
    Choroid plexus tumours are rare epithelial brain tumours and limited information is available regarding their biology and the best treatment. A meta-analysis was done to determine prognostic factors and the influence of various treatment modalities. A thorough review of the medical literature (1966–1998) revealed 566 well-documented choroid plexus tumours. These were entered into a database, which was analysed to determine prognostic factors and treatment modalities. Most patients with a supratentorial tumour were children, while the most common sites in adults were the fourth ventricle and the cerebellar pontine angle. Cerebellar pontine angle tumours were more frequently benign. Histology was the most important prognostic factor, as one, five, and 10-year projected survival rates were 90, 81, and 77% in choroid plexus-papilloma (n=353) compared to only 71, 41, and 35% in choroid plexus-carcinoma respectively (P<0.0005). Surgery was prognostically relevant for both choroid plexus-papilloma (P=0.0005) and choroid plexus-carcinoma (P=0.0001). Radiotherapy was associated with significantly better survival in choroid plexus-carcinomas. Eight of 22 documented choroid plexus-carcinomas responded to chemotherapy. Relapse after primary treatment was a poor prognostic factor in choroid plexus-carcinoma patients but not in choroid plexus-papilloma patients. Treatment of choroid plexus tumours should start with radical surgical resection. This should be followed by adjuvant treatment in case of choroid plexus-carcinoma, and a ‘wait and see’ approach in choroid plexus-papilloma

    Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes

    Get PDF
    Oral–facial–digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype

    Nievergelt Syndrome

    No full text

    Early onset hearing loss in autosomal recessive hypophosphatemic rickets caused by loss of function mutation in ENPP1.

    No full text
    Autosomal recessive hypophosphatemic rickets 2 (ARHR2) is a rare form of renal tubular phosphate wasting disorder. Loss of function mutations of the ecto-nucleotide pyrophosphatase/pyrophosphodiesterase 1 gene (ENPP1) causes a wide spectrum of phenotypes, ranging from lethal generalized arterial calcification of infancy to hypophosphatemic rickets with hypertension. Hearing loss was not previously thought to be one of the features of the disease entities and was merely regarded as a complication rather than a part of the disease. We report two children who presented in mid to late childhood with progressive varus deformity of their legs due to hypophosphatemic rickets caused by mutations in the ENPP1 gene. Both children had evidence of progressive hearing loss requiring the use of hearing aids. This report of two unrelated infants with compound heterozygous mutations in ENPP1 and previously published cases confirms that mild to moderate hearing loss is frequently associated with ARHR2. Early onset conductive hearing loss may further distinguish the autosomal recessive ENPP1 related type from other types of hypophosphatemia

    Clin Gen

    No full text
    Nievergelt syndrome (NS) is an autosomal dominant mesomelic dysplasia characterized by specific deformities of the radius, ulna, fibula and a rhomboid shape of the tibia. Phenotypically overlapping conditions such as mesomelic dysplasia, Savarirayan-type (MIM 605274), have been described, but their pathogenesis also remains unknown. We report on a girl with fibular agenesis, severely abnormal, triangular tibiae, urogenital tract malformations, failure to thrive, convulsions and recurrent apnoeas leading to respiratory arrest at the age of 4 months. Her skeletal findings correspond to those of the mesomelic dysplasia, Savarirayan-type recently described in two patients. In addition to the skeletal findings, our patient had central nervous system manifestations and developmental anomalies of the urogenital tract. In the patient described in this study, array comparative genomic hybridization (CGH) analysis revealed a de novo interstitial microdeletion of 500 kb on chromosome 2q11.1 containing the LAF4/AFF3 (lymphoid-nuclear-protein-related AF4) gene. In situ hybridization analysis of Laf4 in mouse embryos revealed expression in the developing brain, in the limb buds and in the zeugopod corresponding to the limb phenotype. Haploinsufficiency for LAF4/AFF3 is associated with limb, brain and urogenital malformations and specific changes of the tibia that are part of the NS spectrum

    Characterisation of X;17(q12;p13) translocation breakpoints in a female patient with hypomelanosis of Ito and choroid plexus papilloma.

    No full text
    An X;17 translocation breakpoint was characterised in a 5-year-old female with hypomelanosis of Ito (HI) who exhibits characteristic hypopigmented lesions, psychomotor retardation, and choroid plexus papilloma. A YAC clone containing the locus DXS1 from Xq12 was found by fluorescence in situ hybridisation to cross the translocation breakpoint. Cosmid clones positive for DXS1 were used to identify and clone the translocation junction fragment from the patient's DNA. A chromosome-17-specific DNA fragment was isolated and used to identify cosmid clones crossing the translocation from chromosome 17p13. Exon trapping identified two known genes from chromosome 17: FMR1L2 (the fragile X mental retardation syndrome like protein 2) and SHBG (human sex hormone-binding globulin). Mapping the FMR1L2 and SHBG genes showed that neither gene was disrupted by the translocation
    corecore