101 research outputs found

    Identification of de novo variants in nonsyndromic cleft lip with/without cleft palate patients with low polygenic risk scores

    Get PDF
    [Background]: Nonsyndromic cleft lip with/without cleft palate (nsCL/P) is a congenital malformation of multifactorial etiology. Research has identified >40 genome-wide significant risk loci, which explain less than 40% of nsCL/P heritability. Studies show that some of the hidden heritability is explained by rare penetrant variants. [Methods]: To identify new candidate genes, we searched for highly penetrant de novo variants (DNVs) in 50 nsCL/P patient/parent-trios with a low polygenic risk for the phenotype (discovery). We prioritized DNV-carrying candidate genes from the discovery for resequencing in independent cohorts of 1010 nsCL/P patients of diverse ethnicities and 1574 population-matched controls (replication). Segregation analyses and rare variant association in the replication cohort, in combination with additional data (genome-wide association data, expression, protein–protein-interactions), were used for final prioritization. [Conclusion]: In the discovery step, 60 DNVs were identified in 60 genes, including a variant in the established nsCL/P risk gene CDH1. Re-sequencing of 32 prioritized genes led to the identification of 373 rare, likely pathogenic variants. Finally, MDN1 and PAXIP1 were prioritized as top candidates. Our findings demonstrate that DNV detection, including polygenic risk score analysis, is a powerful tool for identifying nsCL/P candidate genes, which can also be applied to other multifactorial congenital malformations.The present study was supported by the German Research Foundation (DFG)-Grants BE 3828/8-1, LU 1944/2-1, MA 2546/5-1, and LU1944/3-1

    Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    Get PDF
    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversityVersión del editor4,411

    Framework and baseline examination of the German National Cohort (NAKO)

    Get PDF
    The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5

    The role of manufacturing in affecting the social dimension of sustainability

    Full text link

    Tillväxt och överlevnad av Acidithiobacilli i sura, metallrika miljöer

    No full text
    Acidithiobacilli are acidophilic microorganisms that play important roles in many natural processes such as acidification of the environment, influencing metal mobility, and impacting on global sulfur and iron cycles. Due to their distinct metabolic properties they can be applied in the industrial extraction of valuable metals. Acidithiobacilli thrive in an environment which is extremely acidic and usually low in organic carbon but highly polluted with metals. In the quest to gain insight into how these microorganisms can thrive in their extreme environment, relevant facets of metabolism, metal resistance, and pH homeostasis were exploredwith the focus on two model organisms, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans. Understanding these fundamental aspects of an acidophilic lifestyle will help to eventually control detrimental effects on the environment due to acidification and metal pollution as well as improving metal extraction utilizing acidophilic microorganisms. Bioinformatics can give information about the genetic capacity of an organism. Likewise, ‘omics’ techniques, such as transcriptomics and proteomics to study gene transcription profiles and differentially expressed proteins canyield insights into general responses as well as giving clues regarding specific mechanisms for adaptation to life in extreme environments. This approach was used to investigate the sulfur metabolism of At. caldus which is an important sulfur oxidizer for industrial metal extraction. It was found that sulfur oxidation pathways were diverse within acidithiobacilli and a model of At. caldus sulfur oxidation was proposed. Furthermore, At. ferrooxidans anaerobic sulfur oxidation coupled to ferric iron reduction was studied which can be of importance for industrial processes. It was shown that anaerobic sulfur oxidation was, at least in part, indirectly coupled to ferric iron reduction via sulfide generation. Moreover, metal toxicity and resistance mechanisms in acidophiles are of major interest. Thus, zinc toxicity in three model organisms, At. caldus, Acidimicrobium ferrooxidans, and ‘Ferroplasma acidarmanus’, was explored. An important finding was that the speciation of metals and other chemical influences were of great importance for zinc toxicity in acidophiles. Additionally, the three organisms showed distinct responses to elevated zinc levels. Finally, the response of At. caldus to various suboptimal growth pH was evaluated to gain insights into pH homeostasis mechanisms. The results indicated that At. caldus used acid resistance mechanisms similar to those described for neutrophilic microorganisms. Analysis of fatty acid profiles demonstrated an active modulation of the cyctoplasmic membrane in response to proton concentration, likely resulting in a more rigid membrane at lower pH

    Apoptose von Alveolar Typ II Epithelzellen nach stumpfem Thoraxtrauma - Rolle der Alveolarmakrophagen

    No full text
    Alveolar type 2 (AT2) cell apoptosis is an important mechanism during lung inflammation, lung injury and regeneration. Blunt chest trauma has been shown to activate inflammatory cells such as alveolar macrophages (AM) or neutrophils (PMN), resulting in an inflammatory response. The present study was performed to determine the capacity of different components / cells of the alveolar compartment like AM to induce apoptosis in AT2 cells following blunt chest trauma. To study this, male Sprague Dawley rats were subjected to either sham procedure or blunt chest trauma induced by a single blast wave. Various time points after injury (6 h - 7 d) lungs were analyzed by immunohistochemistry, stained with an anti-cytokeratin-antibody (clone MNF-116) as AT2 cell marker or antibodies directed against Caspase 3, Caspase 8, Fas, Fas ligand (FasL), BAX and BCL-2. BAL-concentrations of Fas Ligand and IL-1b were determined by ELISA. Furthermore, cultures of AT2 cells isolated from healthy rats were incubated with supernatants of AM obtained from either trauma or sham operated animals in the presence or absence of H2O2. Annexin 5 stain and TUNEL assay were used to detect apoptotic events in AT2 cells. Histological evaluation revealed that the totality of AT2 cells was significantly reduced at 48 hours following trauma. Fas, FasL, active Caspase 8 and active Caspase 3 were markedly up regulated in AT2 cells after chest trauma. BAX and BCL-2 did not show any changes between sham and trauma. In BAL fluids, IL-1b and FasL were markedly increased at 24 hours after injury. The apoptosis rate of AT2 cells incubated with supernatants from cultured AM, isolated at 48 hours following chest trauma or sham procedure, was markedly increased when compared to shams. In summary, blunt chest trauma induced apoptosis in AT2 cells via the extrinsic death receptor pathway (Fas/ FasL). Furthermore, mediators released by AM appeared to be involved in the induction of programmed cell death in AT2 cells
    corecore