142 research outputs found

    Nuclear Structure Calculations with Coupled Cluster Methods from Quantum Chemistry

    Full text link
    We present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same model space and other truncated shell-model calculations shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei, with much less computational effort than traditional large-scale shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged shell-model calculations with four or more major shells are not possible. However, these and even larger systems can be studied with the coupled cluster methods due to the polynomial rather than factorial scaling inherent in standard shell-model studies. This makes the coupled cluster approaches, developed in quantum chemistry, viable methods for describing weakly bound systems of interest for future nuclear facilities.Comment: 10 pages, Elsevier latex style, Invited contribution to INPC04 proceedings, to appear in Nuclear Physics

    Logarithmic and complex constant term identities

    Full text link
    In recent work on the representation theory of vertex algebras related to the Virasoro minimal models M(2,p), Adamovic and Milas discovered logarithmic analogues of (special cases of) the famous Dyson and Morris constant term identities. In this paper we show how the identities of Adamovic and Milas arise naturally by differentiating as-yet-conjectural complex analogues of the constant term identities of Dyson and Morris. We also discuss the existence of complex and logarithmic constant term identities for arbitrary root systems, and in particular prove complex and logarithmic constant term identities for the root system G_2.Comment: 26 page

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    Physically Similar Systems - A History of the Concept

    Get PDF
    PreprintThe concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering (Froude, Bertrand, Reech), theoretical physics (van der Waals, Onnes, Lorentz, Maxwell, Boltzmann) and theoretical and experimental hydrodynamics (Stokes, Helmholtz, Reynolds, Prandtl, Rayleigh). In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century mathematics and mechanics: equations, functions and dimensional analysis. The terminology physically similar systems was proposed for this new characterization of similar systems by the physicist Edgar Buckingham. Related work by Vaschy, Bertrand, and Riabouchinsky had appeared by then. The concept is very powerful in studying physical phenomena both theoretically and experimentally. As it is not currently part of the core curricula of STEM disciplines or philosophy of science, it is not as well known as it ought to be

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    A proposal "To study the information needs of residents, businesses and all organisations within the region 12 area"

    No full text
    This report contains a proposal to carry out a research project into the "information needs of residents, businesses and organisations" in Region 12

    Radioimmunohistochemistry of epidermal growth factor receptor in breast cancer

    No full text
    Context Conflicting reports of epidermal growth factor receptor (EGFR) expression in breast cancer and inconstant relationships with established prognostic indicators and outcomes suggest difficulties with EGFR measurement. Objective To compare EGFR measurement in a panel of cell lines and in breast carcinomas by radioimmunohistochemistry (R-IHC), conventional immunohistochemistry (IHC), and a ligand binding (LB) assay. Design Eight EGFR-expressing cell lines and 50 primary breast carcinoma specimens were analyzed for EGFR by IHC, R-IHC, and LB assays. A further 153 primary breast cancer specimens were analyzed by R-IHC alone. Results All 3 assays were in good agreement for the cell lines. In the subset of the 50 carcinoma specimens, EGFR was detected by LB assays in 19 (38%) and by IHC in 24 (48%). However, R-IHC detected EGFR in 46 (92%) of 50 and in 186 (92%) of all 203 carcinoma specimens. The LB assay agreed poorly with R-IHC of carcinomas, possibly because the LB assay is sensitive to EGFR-expressing nontumor breast parenchyma in the tissue analyzed. Both IHC and R-IHC on carcinoma specimens agreed better, but 26 carcinoma specimens (52%) in which EGFR was not detectable by IHC had a 10-fold range in receptor level detectable by R-IHC. Conclusion To elucidate the role of EGFR or other growth factor receptors in breast cancer requires accurate, sensitive receptor assays. With its dynamic range, R-IHC returned meaningful results over the entire range of expression actually present in breast cancer, which LB assays and IHC failed to do
    corecore