119 research outputs found
Requirements modelling and formal analysis using graph operations
The increasing complexity of enterprise systems requires a more advanced
analysis of the representation of services expected than is currently possible.
Consequently, the specification stage, which could be facilitated by formal
verification, becomes very important to the system life-cycle. This paper presents
a formal modelling approach, which may be used in order to better represent
the reality of the system and to verify the awaited or existing systemâs properties,
taking into account the environmental characteristics. For that, we firstly propose
a formalization process based upon properties specification, and secondly we
use Conceptual Graphs operations to develop reasoning mechanisms of verifying
requirements statements. The graphic visualization of these reasoning enables us
to correctly capture the system specifications by making it easier to determine if
desired properties hold. It is applied to the field of Enterprise modelling
Visual Complexity and Its Effects on Referring Expression Generation
Speakersâ perception of a visual scene influences the language they use to describe itâwhich objects they choose to mention and how they characterize the relationships between them. We show that visual complexity can either delay or facilitate description generation, depending on how much disambiguating information is required and how useful the sceneâs complexity can be in providing, for example, helpful landmarks. To do so, we measure speech onset times, eye gaze, and utterance content in a reference production experiment in which the target object is either unique or non-unique in a visual scene of varying size and complexity. Speakers delay speech onset if the target object is non-unique and requires disambiguation, and we argue that this reflects the cost of deciding on a high-level strategy for describing it. The eye-tracking data demonstrates that these delays increase when the speaker is able to conduct an extensive early visual search, implying that when a speaker scans too little of the scene early on, they may decide to begin speaking before becoming aware that their description is underspecified. Speak- ersâ content choices reflect the visual makeup of the sceneâthe number of distractors present and the availability of useful landmarks. Our results highlight the complex role of visual perception in reference production, showing that speakers can make good use of complexity in ways that reflect their visual processing of the scene
Avatar-mediated creativity: When embodying inventors makes engineers more creative
An important challenge today is to support creativity while enabling geographically distant people to work together. In line with the componential theory of creativity, self-perception theory and recent research on the Proteus Effect, we investigate how avatars, which are virtual representations of the self, may be a medium for stimulating creativity. For this purpose, we conducted two studies with a population of engineering students. In the first study, 114 participants responded to online surveys in order to identify what a creative avatar may look like. This enabled us to select avatars representing inventors, which were perceived as creative by engineering students, and neutral avatars. In the second study, 54 participants brainstormed in groups of 3, in 3 different conditions: in a control face-to-face situation, in a virtual environment while embodying neutral avatars and in a virtual environment with inventor avatars. The results show that inventor avatars led to higher performance in fluency and originality of ideas. Moreover, this benefit proved to endure over time since participants allocated to inventor avatars also performed better in a subsequent face-to-face brainstorming. The prospects of using avatars for enhancing creativity-relevant processes are discussed in terms of theoretical and applicative implication
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2â4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesâincluding reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)âin critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, PÂ =Â 1.65Â ĂÂ 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, PÂ =Â 2.3Â ĂÂ 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, PÂ =Â 3.98Â ĂÂ Â 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, PÂ =Â 4.99Â ĂÂ 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Vampires in the village Ćœrnovo on the island of KorÄula: following an archival document from the 18th century
SrediĆĄnja tema rada usmjerena je na raĆĄÄlambu spisa pohranjenog u DrĆŸavnom arhivu u Mlecima (fond: Capi del Consiglio deâ Dieci: Lettere di Rettori e di altre cariche) koji se odnosi na dogaÄaj iz 1748. godine u korÄulanskom selu Ćœrnovo, kada su mjeĆĄtani â vjerujuÄi da su se pojavili vampiri â oskvrnuli nekoliko mjesnih grobova. U radu se podrobno iznose osnovni podaci iz spisa te reÄeni dogaÄaj analizira u ĆĄirem druĆĄtvenom kontekstu i prate se lokalna vjerovanja.The main interest of this essay is the analysis of the document from the State Archive in Venice (file: Capi del Consiglio deâ Dieci: Lettere di Rettori e di altre cariche) which is connected with the episode from 1748 when the inhabitants of the village Ćœrnove on the island of KorÄula in Croatia opened tombs on the local cemetery in the fear of the vampires treating.
This essay try to show some social circumstances connected with this event as well as a local vernacular tradition concerning superstitions
- âŠ