Requirements Modelling and Formal Analysis using Gaph
Operations

B. KAMSU-FOGUEMY and V. CHAPURLAT:

tLaboratoire Génie de Production - Ecole Nationdlegénieurs de Tarbes
47, avenue d’Azereix - BP 1629, 65016 Tarbes Cé&darce
Tel : (33) 6 24 30 23 37 Fax:(33)562 44 27 08

FLGI2P - Site EERIE de I'Ecole des Mines d’Ales,dstientifigue George Besse,
30035 Nimes cedex 1 France

Abstract

The increasing complexity of enterprise systemalireq a more advanced analysis
about the representation of services expected ithaarrently possible. Consequently,
the specification stage, which could be facilitabgdformal verification, becomes very
important to the system life cycle. This paper pneés a formal modelling approach,
which may be used in order to better representdaly of the system and to verify the
awaited or existing system’s properties, takingoirdccount the environmental
characteristics. For that, we firstly propose anfalization process based upon
properties specification, and secondly we use Gune¢ Graphs operatiorte develop
reasoning mechanisms of verifying requirementssiahts.The graphic visualization
of these reasoning enables us to correctly capheresystem specifications by making
easier to determine if desired properties holés Hpplied to the field of the Enterprise
modelling.

Keywords:

Enterprise Modelling, Conceptual Graphs, PropeSijescification, Formal Verification

1. Introduction

Enterprise processes become increasingly compl&kgtainto account not only
classical technical and technological aspects k&t aocial dependencies and the
constant changing economic environment. Engineeesl hto model a given process in
order to better understand it; the goal must bergyoing process optimization to test a
new control policy. Then the description and thefwation and/or validation of each
stage of an enterprise process specification beamngal, since they condition the
quality, adequacy and efficiency of the servicewdpced. Thus our approach
contributes to its profitability by a central thdeanodelling the process knowledge in a
formal, provable, testable and re-usable form. &pisroach can be considered as a new
way for Enterprise Modelling (Fox and Gruninger &P%hat aims to support
understanding of what happens in an enterprisepstigesign and analysis of a
business entity, improve knowledge level abouttttiegs of the enterprise and help to

Y Corresponding author. Email: Bernard.Kamsu-Foguemi@r

B. Kamsu Foguerand V. Chapurlat

define more suitable models for decision-makingvéws both in the engineering and
operation phases of the enterprise.

1.1 Modelling issues for integration and change magement

Researchers draw distinctions between Systems E&mgny and Requirements
Engineering. Systems Engineering is “a disciplinat ttoncentrates on the design and
application of the whole (system) as distinct frtme parts. It involves looking at a
problem in its entirety, taking into account aletlfacets and all the variables and
relating the social to the technical aspect” (NA®4A). Requirements Engineering is a
branch of systems engineering that addresses dtemmslof stakeholder needs into
system requirements and facilitates the proceswligh the specification of systems
and/or components satisfies those requirements ny &004). In order for efficient
management of change to occur, enterprises hagep® carefully with the efficiency
of the enterprise engineering or reengineering ggecBusiness Processes modelling is
an important part of the engineering effort, anddelling languages are essential
components used at each step of Business Proaggasering methodologies (Peit

al. 2002, Girard and Doumeingts 2004). Models enaolemunication among the
various people involved in the process in orderntaster the enterprise system’s
complexity, to understand and analyse the situatiorre-engineer and to ultimately
control or monitor the system. Moreover, enterpnisedelling is a prerequisite to
enterprise integration (Molinat al. 2004, Kosanket al 2003) because if parts of the
enterprise are meant to communicate with each othey should share some common
models to enable better performance and qualitylteeésee Vernadat (1996, 2002) for
a detailed motivation for enterprise modelling). sé\| enterprise systems and
applications need to be interoperable in orderctuiesve seamless business interaction
across organisational boundaries and thus reaétgonked organisations (ATHENA
2004, INTEROP 2003, Ducef al 2004).

Consequently, part of the re-engineering procedgiaricy concern lies in the
efficiency of enterprise modelling process itsetfce models are used at all stages of
this process. This need for efficiency imposes irequents (precision, easiness and
expressiveness) on the languages used for produoiatgls and (re-using knowledge
about the existing system and generic knowledgeeeon the process of modelling and
designing systems.

1.2 Analysing Requirements Models

The primary measure of success of a requirementhugl approach is always done in
terms of the kind of analysis and reasoning it rsffeThe analysis techniques can
therefore be used to generate useful informatiomfthe models produced. Techniques
such as goal driven approaches (like KAOS (Van leeesde et al 1998)),
specification animation (Haumet al 1998) and the use of scenarios (like CREWS
(Rollandet al. 1998, Sutcliffe 2002)) have received considerabiention in industrial
applications, but they suffer from a lack of premisor exhaustiveness in analysis.
Among many key elements in making the best posdgilgesion in a requirement
engineering project, formal approaches appear sugted in an early phase of a project
life-cycle for checking global coherence and pacdansistency between all the various
requirements and specifications of different fumies of the system (Morek al. 2003).
Theseformal approachegMonin 2003), based upon mathematical constructs set-
theory notation, can be used to produce precissamnbiguous documentation, in which
information is structured and presented at an gp@@ level of abstraction.

Requirements Verification with Graph Operations

Techniques such as model checking and theoremmydave a long tradition in formal
specification languages like algebraic specifiaagigEhrig and Mahr 1985), Z (Spivey
1992), CSP (Hoare 1985), Petri nets (Coeteal. 2003), or temporal logics (Manna and
Pnueli 1992). Despite of their relative maturitytivim software engineering research,
there are very few practical applications to erriegpmodelling and automation systems
(Volker and Kramer 2002). Reasons for this incluthe complexity of formal
specification techniques and the lack of trainirigenterprise engineers in applying
them. Furthermore, there are also well-known littotes of formal verification such as
the state-explosion problem within model checking.
This work attempts to bridge the semantic gap betwde engineer and the formal
specification by allowing results of an analysisb® easily reviewed for relevance. In
such circumstance we wish to carry out exhaustneeks (models) of systems by using
the elements (formal specification, formal reasgnimathematical proof) of a formal
approach (figure.1 adapted from (Grady 1997), sunaes this vision). In particular
the principle of mathematical proof is to desctibe properties (functional, behavioural
and structural) needed in the form of a theorem tandhow that it can be directly
deduced from the specification.

FR

< N,
w Ll

FS
Environmentv/

Real Word

A
v

Models
(semantick

$ Specifications
(syntay

\
) Tuning

Description
e
5
e}
=4

'

Formal Reasoning

Formal Specification
4 (FR)

(FS)

Figure 1. Example of formal approach

2. Formalization of knowledge: proposed approach

To formulate requirements in industrial system$orimal specifications are generally

used, because they may seem, at first glance teasyderstand for the client. However,

many problems appear (Robertson and Robertson B389,2002), having sometimes

heavy consequences on the development of the psoduc

— problems of communication between the client, thgpleyee, and the manager
(specifications can be interpreted in several ways)

— documents are not rigorous enough, inducing opmerali difficulties for later
automatic processing;

— it is difficult to verify a specification, i.e toheck that the requirements are correctly
modelled.

— inherently fault-prone, which can prove costly alufts are discovered later in the
integration and acceptance testing.

In front of such report, enterprise modelling haerb developed for example, in the F3

project (Bubenkoet al 1994) to provide a set of models for understapdine

B. Kamsu Foguerand V. Chapurlat

requirements and bridging the gap between ill-aefirproblems and application
situations as well as to define requirements obrmfation systems formally and
precisely. In accordance with this point of viele tkey idea of the work is to use a
formal approachlike an alternative by giving the user (modellereagineer) the ability
to use verification inside their task as a meareakoning and enriching his modelling
or system specifications. This section presentsvtn@e hypothesis allowing to develop
a sequence of processing, as a solution to assis@afization. One major goal of the
proposed formal specification method should be doilifate the transmission of
meanings through all the actors of an engineerysgesns process. For doing this, the
conceptual graphs (CG) are the chosen formalism kfoswledge representation,
considering that they allow the representationeibtogeneous knowledge, a powerful
structuring mechanism (Sowa and Zachman 1992)itendexpress meaning in a form
that is logically precise, humanly readable andehavset of inference mechanisms
(Chein and Mugnier 1992).

The intention is to formalize knowledge about syste requirements and to
communicate the resulting patterns back to thenemgs for eventual more advanced
validation techniques and improvement. This way, want to provide a framework
within which people can specify, develop, and wesfstem models in a systematic,
rather than ad hoc manner. Therefore, to answestégeof formalization, we propose a
sequence to process the initial requirements,Jikelprovide a formal specification.
The sequencing of the various stages (Natural LaggyNL) requirements, properties
description, knowledge representation and reassnwigh graph operations) of this
methodology (figure.2), represents the implemeoiatif our objective, balanced by the
whole of the hypothesis stated above.

Natural Language (NL)
Requirements

NL -> Spe«

Y

—| Properties descriptit

* Interpretatior

CG Representatic
L] Graph operation

Reasoning mechanis
|

Improvemer/ v
modificatior Validatior

Figure 2. Methodology used for the constructiothef formal specification

3. Properties description

3.1. Properties analysis

At the sight of the traditional problems arising aty requirements modelling and
reasoning stage (heterogeneous knowledge, amhigdifferent points of view,
hierarchical organisation, the system objective), & formal model has been elaborated
(Chapurlatet al. 2002) making possible the description of propsrfior requirements

Requirements Verification with Graph Operations

specification. A Property Reference Repository (fisa 2004, Chapurladt al 2005)
(not presented here) allows the task of selectimdyspecifying the relevant properties
(of the pointed out system and of the model) tsibgplified and thus accelerated. We
argued that most requirements engineering problemaths are instances of a tractable
set of object system models. Each model contaimergé features shared by all
instances of that problem domain. For instance, moeel of the NATURE project
(Maiden and Hare 1998) contains general featuresllofesource hiring problem
domains, examples of which are lending libraries, rental and video hiring. Another
contains general features of all object sensingblpro domains. In our context,
classifying properties is one approach for helpprgctitioners identify and specify
common types of behaviours or situations. So, ttkieels of properties are to be
describedaxiomatic systemandmodei

B. Kamsu Foguerand V. Chapurlat

Axiomatic Properties: These are facts, rules and laws which concerrapipdication
domain; the trivial knowledge about the applicatdmmain that the analyst can hardly
invent. The axiomatic properties permit detailealsming about what is assumed about
the domain, and they provide opportunities for nequents reuse within a domain.
Described here, are the objects that will havedaartodelled by the system and their
attributes to fit one's surroundings. For instarfoe,a company that produces cars
according to the orders received from customers,hexe the following axiomatic
properties:

- The enterprise consists of a physical system, sidacsystem and an information
system. The control system, which is composed efdbcision and information
systems, controls the physical system and enabéesriterprise as whole to reach
its goals.

- The purchase of a new kind of machine by the manefi@encesthe quality of
products provided by the enterprise

- The growth in activities that are performechplies the increase in resource
consumption.

System properties These properties rely on Systems Engineering {iMa®97, Incose
2004) and express the characteristics of the tagstem (constraints, requirements,
behavioural, functional and structural) and itsiggesd objectives. Examples for such
properties are deadlock freedom, timing consisteswg limited capacity resources.
When developing a concurrent object-oriented appba, deadlock freedom of the
interaction is often a major requirement. Timinghsistency is of importance for real-
time systems. There, it must be assured that nepucess are performed within a
given pre-defined time span. Limited capacity reses are often a characteristic
feature of embedded applications. Lamport in (Larhd®77) described two others
categories of system properties: safety (somethag) never happens) and liveness
(something good eventually happens).

Model properties. These properties characterize the features ahthaelling language
used (basic constructs, syntactic principles amdaséic rules). Also, they enable the
user to establish what to expect from the modeirectness, coherence, re-initialize
state, parallelism, synchronization, sequence, tdedimarking, cycle, temporal aspects,
etc. This allows the user to translate some ofsifstem’s properties corresponding to
requirements and expectations. For instance, ifhlyhserial process is operating too
slowly to meet an impending deadline, the user megcribe some actions on the
model, such as to pipeline (i.e. release partgllte to allow later tasks to start earlier)
or parallelize to increase concurrency.

The user (modeller or engineer) can select, froim Itkt of possible properties types,
the ones that seem most important in his/her paaticontext. All these properties can
be easily written in conceptual graphs as formptegentation. Also, formalization of
these properties as algebraic equations is reaeliRiolussekt al 2004), but the main
weakness of such method lies in the need to matgpalgebraic statements that are not
user friendly for enterprise engineers. Furthermtweelate these classes of properties
to specifications solutions, we developed an orinad) classification of various
properties that we linked to production system n®d® represent candidate
specifications solutions for different requiremeni® exploit the Property Reference
Repository we developed computational models ofogmeal reasoning (Chapurlat

al. 2005) to retrieve types and characteristics ajperties that matched a new
application to enable reuse of knowledge about gheblem domain and possible
specifications system solutions to it.

Requirements Verification with Graph Operations

3.2. Properties identification

At the methodological level, properties identifioat of complex systems is made by
the following means: requirements analysis in ortteridentify system needs, test
specifications to ensure completeness as well astiinal and technical feasibility,

statement description of the system's objectivelscamstraints according to knowledge
of pattern-making methods, reading of technicaludoents and interview domain

experts. Likewise, it is necessary to study the @hd impact of domain knowledge
(Jackson 1994). Since many new applications hages#ime requirements as earlier
ones, one possibility is to create generic domaiopgrties as templates for

requirements of certain classes of applicationsiddtaand Hare 1998). This facilitates
reuse in properties identification by providingssef predefined generic properties for
developing system properties specification.

Furthermore, some international standards documkat® been developed to aid
properties critiquing as well as specification. Fexample, in the manufacturing

domain, the ISO TC 184/SC5/WG1 Technical Report 18314 (ISO 1990) provides a
clear methodology (a list of structured questiohat tcould be posed) to identify

possible properties for areas of standards in stugbintegrated-shop-floor operations.

Information** Resources
M - * Actions {TP, TF, VE, ST} on Material are
ateria Material* i
| defined only at level 1
Information** Information** TP = Transport
» {TP, TF, VE, ST} q TF = Transform
Resources Resources VE = Verify
r— ST = Store

** Information include both control and data
components. Horizontal information flows
Information** Resources are restricted to data components.

Structured question: Should there be or are tHezady standards to relate:

Transform Control information Section

Transport L wijth } Data at the CeII. level 2
Verify Material Stat!on

Store Resources Equipment

Figure 3 : Activity Model for Shop Floor Producti¢isO 1990)

Complexity and complex systems, on the other hgedgerally refer to a system of
interacting units which displays global propertrest present at the lower level. An
emergent property cannot be understood simply lynéxing in isolation the properties
of the system’s components. However, one can fibg investigating the nature of the
rules governing interactions among system compan@eda 2001). Others properties
can be characterized, both formally and empirigallging Case-based Reasoning
(reasoning technique that solves new problems ljogg to past problems, Shiu and
Sankar 2004). It may be used to identify some sintiés between systems used for
different business purposes and to investigate twenmon properties and the general
principles that underlie them (Watson 1997). Aesutt, Case-based reasoning systems
can refer to a case base containing domain caskefinahcase that have characteristics

B. Kamsu Foguerand V. Chapurlat

similar to those of the current one. The similagtimay cover the entire case or only
certain points that led to a portion of the prope@ases can therefore be discovered
that may support some portions of the current edske opposing other parts.

4. The tool of representation and reasoning: Concéyal graphs

The conceptual graphs are a language of knowleglgesentation, introduced by John
Sowa in (Sowa 1984) and extended in (Sowa 2000etBagd Mugnier 2002). Such
language permits at the same time to define a wdaab(i.e. ontology) and to use this
vocabulary to conceptualize facts. Conceptual Ggapghn be considered as a
compromise representation between a formal language a graphical language
because it is visual and has a range of reasomouwegses. Since, enterprise modelling
demands correct models of the system and of it gbat are not easy to capture in an
industrial context (Moreét al. 2001), we will use conceptual graph formalisnassist
the requirements specification phase and expressafly knowledge.

4.1 Formalism presentation

Definition: A simple conceptual graph is a finite, connectidgcted, bipartite graph
consisting ofconceptnodes (denoted as boxes), which are connectedoertheptual
relation nodes (denoted as circles). In the alternativealimotation, concept nodes are
written within []-brackets while conceptual relationodes are denoted within ()-
brackets.

A conceptis composed by a type and a marker [<type>: <mmafkdor example
[Resource: computer2]. Thepe of concept represents the occurrence of objesscla
They are grouped in a hierarchical structure cadedoncept lattice showing their
inheritance relationships. Tmearker specifies the meaning of a concept by specifying
an occurrence of the type of concept. They carvdnmgous natures, in particular
individual, generic (symbol ** within the markerjjuantifiers, or sets (the latter by
using {}-brackets within the marker). The term ‘{*flenotes a set of zero or more
elements, additional cardinality constraints carekgressed, for example, by ‘{*}@5’
(set of five elements) or ‘{*}@>4" (set of more thdour elements). It is also possible
to pair the number with a unit of measure, for egknthe term ‘@96h’ means ninety-
six hours.

A conceptuakelation binds two or more concepts according to the falhgndiagram
[C1] < (relation’s namég— [C;] (means ‘G is in relation with G). Each relation has a
signature, which fixes its arity (the number of wargnts it takes) and gives the
maximum types of concept available, to which ati@faeof the type can relate. The sub-
relation definition is sometimes necessary to mtevmore details in the semantic
representation, and then a relation lattice ishéistaed.

Before representing knowledge with conceptual gsajths first necessary to determine
an ontology (Guarino 1997) dedicated to what wedné&e represent. Thus, the
formalism chosen here was adapted to take intousmtdbe modelling concepts of the
enterprise (Berio 2003) by the construction of ppsut formed by a set of concepts,
structured in a lattice and a set of relations ketwthese concepts. The type used for
concepts and relations must be declared or defmedr formal vocabulary where the
terms may have associated constraints (e.g. siggzatior the relation types) and
definitions (e.g. definitions of necessary andfaffisient conditions) and thus may be
linked to other terms by different relations (egiven or calculated sub-assumption
relations).

Requirements Verification with Graph Operations

Graph:U; naturdManufacturin@©Order
[Enterprise: Num1]-

{
(Consist_Of)->[nformation_system: Num2]-
{<-(AGNT)<-[issue:*]->(OBJ)->[message:Num4];}
(Consist_Of)->bIecisi0n system: Nump
{
(AGNT)<-feceive:*]->(OBJ)->[message:Num4];}
(AGNT)<-§ive:*]-

(OBJ)->[order:Numb5]
(ADDR)-xjhysical system: Numé
%
(Consist_Of)->physical_system: Num§-
{(AGNT)<-[carry_out:*]->(OBJ)->grder: Num5];};
3

Figure 4. GraplJ in the linear notation for specification of a ‘Mé#acturing Order’

The Nested Conceptual Graphs (Chein and Mugnier 1997) enadssciation of any
concept node with a partial internal descriptiom.addition nesting allows to create
several representation levels, to organise thesdsl®f detail into a hierarchy and thus
to zoom on certain concepts by adding internal rmégion to them. An important
advantage of nested graph models is the optioraditipning the reasoning tasks into
separate metalevel stages, each of which can lmmakied in classical first-order
logic. For that, it is defined a mathematical operatot thenslates conceptual graphs
into formulas in the first-order predicate calculuslations become n-ary predicates,
concepts become unary predicates, individual markeccome constants and generic
markers become existentially quantified variables).

4.2. Conceptual Graph Operations

Conceptual graph operations provide a set of tlasamng mechanisms and define
selected constraints of the graphs representingaodtoknowledge and facts. All these
operations are mathematically founded both on ®b¢gound and complete) and graph
theory (Sowa 1984, Chein and Mugnier 1992). Sows thefined four elementary
operations on the conceptual graphs, catlaonical formation rulgswhich allows us
to handle them easily and to derive canonicallynfrother graphscopy, restriction,
simplificationandjoint. For instance, witloint operationtwo graphs having a common
concept node can be merged to form one graph binghtais common concept.

There exists another kind of handling operatiotedgdrojectionthat is the fundamental
element of a reasoning process for conceptual grafie projection search of a graph
G in a graph H can be seen as the inclusion sedirttte information represented by G
in H. This leads to a calculation in the specidgi@abetween the two graphs.

The example given in Figure 5, shows an applicabiotine projection mechanism. This
figure shows a situation in which :

an activity called “to produce” has in input theatl?2 ,
there is another activity called “to record” thasshin output the order C17,

with the request graph, we want to know if thersstsxan activity which has a given
order in output.

B. Kamsu Foguerand V. Chapurlat

Situation

IActivity: to produc Request
o
| Activity: to record @

| Activity | | Order |
|Activity: to producela | Order: Cl7| | Activity: to recordl | Order: C17 |
IActivity: to producq
Coutpup
+ +
failure success

Figure 5 : Application of a projection

In this example, a request (in the form of a questjraph) on the knowledge base
consists in seeking if the graph question can lowgnt starting from the knowledge
base. Beginning from a particular situation desmipand by taking as requests the
states or the events, we can prove the preseneepobperty or the occurrence of a
violated requirement. When a requirement is nasfad and projection failure occurs,
the reasoning steps can help diagnose their undgrlyauses, and suggest specific
interventions for resolving them. Such reasoninthwhe projection (a graph matching
operation) is interesting since the same languagesed at interface and operational
levels.

There exist two other kinds of possible use forjgmion in order to validate
(constraints) or transform (graph rules) a graplanother one. Graphs operations like
these may have been established by the automassoner of a knowledge-based
system or by the engineer. Their explicit represm enables the analysis to give
unambiguous information about the enterprise modglbrocess (causal and revision
contexts), to draw the engineer’'s or machine ageattention to data entries which do
not exactly fit into the current view of the entesp’s situation (conflict contexts).
Consequently, we are able to support the modefimmgess by providing knowledge
that is highly enterprise-adapted, valid only foreqoarticular part of enterprise (intra-
enterprise similarity contexts, enterprise-spedigaristics).

4.3. Reasoning with graph rules

The conceptual graph rules (Besal 1997, Kamstet al 2003) allow one to add new
knowledge. The graph rule is composed of a hypatteesl a conclusion, and is used in
the following classical way: given a simple graftthe hypothesis of the rule projects
to the graph, then the information contained in ¢baclusion is added to the graph.
Rules are split intgtatic rulesanddynamic rules

Requirements Verification with Graph Operations

= Static rules express some immutable domain laws, and their csegplete words
descriptions. In order for an enterprise model tpp®rt common-sense query
processing, it must provide a set of rules of dédogknown as axioms. Here, let
‘works-for’ be a binary relation, whereby we requan axiom stating that ‘works-
for’ is transitive :
x works-fory AND y works-forz IMPLIES x works-forz.

= Dynamic rules define possible transitions from one word to aantifhe successor
of a valid word is obtained by a single applicatmfna transformation rule on this
word. From this perspective, we specify some dycamies in order to describe
precisely how the actors will interact with theaprise. Some new information can
be introduced: the actions performed by the aatdrs interact with the enterprise,
the operations executed in response to an actighebgnterprise and the observable
states (by some actors) of the enterprise. Like ##ch dynamic rule is defined as a
triplet action[condition]/responseln the case of car factory, the example (figure 6
is as follows :

‘A customer places an order for a car [car avadphbthe enterprise does home
deliveries within 96 hours’.

Dynamic-rule (delivery)
Action
(o (| Ca
Condition
Response Period:@ 96h
Customdy

Figure 6: Example of a dynamic rule

4.4. Graph constraints

A constraintdefines conditions for simple graph to be vali@ggBt and Mugnier 2002).
It is composed of @onditional part and amandatorypart. The condition must be a
simple graph. In particular, a condition can beeampty graph Roughly speaking, a
graph satisfies a constraint if for every projectaf its conditional part, its mandatory
part also projects to the graph. We consider p@sénd negative constraints. A positive
constraint expresses a property suchifagformation A is present, then information B
must also be presentFor example, any failing resource must be repaimust be
substitute for new one. A negative constraint esgge a property such ag °
information A is present, then information B must dbserit For example, every
operational process must not have two incompatib&s/ity or a repairing failure
context must be viewed as being inconsistent widmes diagnosis. This kind of
property express that data are viewed to be insterdior that some activities may raise
conflicts. After possible conflicts have been idied, the next step is to use the
information stored in the Property Reference Reposi(section 3) in order to find
ways for avoiding or detecting the conflicts. Altlylh conflicts usually are resolved

B. Kamsu Foguerand V. Chapurlat

after some time (by having more information abaueaterprise model), they should be
represented for a better understanding of the idecpsocess.

Repairing Failure Context

Date:2/6/0%

Date:3/3/0%

IAIterations and Repai!ls incompatibl Diagnosis: P1.. Dn}

(Despite O

| Non-arheliorationl

Figure 7: Example of a graph constraint

In fact, the constraints can be applied to expnesthematical coherence in the case of
model analysis or to ensure and/or restore comsigtef the systems specifications.
Indeed, some of the systems specifications basesh ugsers needs might be
constraining from a technical and/or a domain poihwview. Hence, constraints are
used to check that a specification provides an rateuaccount of stakeholder
requirements.

5. Case Study: a product development process

In this section, we will demonstrate how the apphodescribed in this paper can be
used to systematically specify and verify propsrijer point out possible gaps) in an
experimental case of a business process. The applmgins with a construction of
abstract description (i.e. a model of the produstetbpment process) that is amenable
to interpretation. The construction of such modelynbe done with a modelling
language like UEML (Berio 2003). Particularly, thedel of the product development
process typically includes a “design product” atyivfollowed by a “manufacture
product” activity, which, in turn, is followed by ‘@eliver product” activity. Figure 8
depicts a simplified but accurate model of thiscess, based on the descriptions
contained in (Kamsu 2004). The model consists ofebp which describe process
activities, and lines, which describe various deeecy relationships, that is,
constraints that must hold true in order for thecpss to succeed.

This model has been characterized by several preper

- If one then uses a type of manufacturing activitgen the material used and the
geometry of the produced objects have indissoci@aleires of this activity.

- The output of the “design product” activity must cmnsistent with the capabilities
of the “manufacture product” activity.

- The shape attributes of the output and input ofdleiver product” activity must be
equal.

- If several activities are causing wasteful overlsdaylfrequently trading the use of a
scarce shared resource, Then change the resouadagsipolicy such that each
activity gets to use the resource for a longer time

Requirements Verification with Graph Operations

- The deadlock situations (where several activitreseach waiting for another one to
do something) are forbidden.

- The resource poaching situations (wherein highripyicactivities are unable to
access needed resources because these resouyceavibalready been reserved by
lower priority activities) are forbidden.

These properties can be applied in order to hefpgdeeffectual new processes. They
can also be a helpful knowledge when verifying riiedel of studied business process.
Explicitly describing the properties is a necesgamgcondition not only for verifying
requirements, but also for resolving conflicts bexdw stakeholders (person and team
that are responsible for or in some way have aedestterest in the requirement or
product under consideration).

Controls Controls Controls
flows flows flows
) Design .| Manufacture . Deliver >
Input I1 product 12 product 3 product Output 03
Eﬁ;:?lg:ﬂ MachineT TOperator Conveyorx TOperator

Figure 8: A model of the "product development" e

5.1. Model verification

One central goal of model-based development isv&ble analysis of the system, thus
ensuring the quality of the system already on tbdehlevel. That is, we want to reason
about certain properties of the system prior todbestruction of the implementation.
The purpose of verification is to prove that, undeertain set of assumptions, a system
will adhere to a certain set of properties, for ragke the design requirements. For
verification of properties, first a suitable formegrification tool has to be chosen
capable of verifying the aspects associated tgtbperty. Lightweight formal methods
(Easterbrooket al. 1998, Jackson 2001) (for instance a formal caiueépmodeling)
show significant promise in this context, as thégroa way of uncovering major errors
without the burden of full proofs of correctness.

We will concentrate on model-based verification @he property verification is not
directly performed on model level. During propevsyrification, the model is translated
into a suitable conceptual graph. In order to bthklconceptual graph corresponding to
a given enterprise process model, we have develapddimplemented an algorithm
(Kamsu 2004) allowing this translation, the impatt@haracteristics of the same is
described as follows: the concepts of process maetranslated into the conceptual
graph according to their respective marker (indiigl generic or variable) and relations
are translated in terms of typed relations, predd@mns and post-conditions. Since the
transformation is isomorphic, we assume that taesiation is semantic-preserving. As
a consequence, if the property is not fulfilled, @@ conclude that the model itself does
not fulfil the property. The following section offea view of this kind of verification,
wherein the reasonings are modelled using grapdryhand the anomalies are defined
in graph-theoretic terms.

5.2. Proof of properties

B. Kamsu Foguerand V. Chapurlat

Let G is the graph representing a modelis the query graph representing the property
to prove, R is a set of implicit knowledge rulesl&be a set of constraints depending
from the domainP is deduced fromQ, R, G if it is possible to obtain a valid grai

by a sequence of immediate transformation&peuch thaP can be projected intG’.

In this case, the property P will be verified. her case, conceptual graph theory offer
some means allowing us to establish what are tksilple causes of non verification of
P. This permits to highlight some defaults or nkstaand then to improve the model.
This way, conceptual graphs provides inference @@sims for proving properties by
using projection, rules and constraints. These desitnative abilities make verification
knowledge possible. For example, if we considerpitueluct development process, we
want to verify the following propertl; :

P, ‘If one then uses a type of manufacturing agtithien the material used and the geometry of
the produced objects have indissociable featurdékigfactivity’.

For the purpose of this verification task, one rnag the negative constralt and the

rule R, presented below:

Nc ‘Two equivalent manufacturing activities mustyide in output some identical products’
R, ‘If two given products have different geometrigtitibutes then they are different’.

We will use theproof by reductio ad absurdum that is a method of proof which
proceeds by stating a proposition and then shothiagit results in a contradiction, thus
demonstrating the proposition to be false. Thiophy reductio ad absurdum B4f in
natural language is as follows: supposing thahe groduction system, there are two
productsx andy which are coming from two equivalent manufacturaagivities, with
different geometrical attributes. The previous r>ells us that the product is
different to the producty. Consequently, there are two equivalent manufaxjur
activities that produce different products. Thisulé breaks the rule Nand belies our
starting hypothesis, so it all goes to prove prgper.

The sequences of proof are formalized in concepfuegdhs as follows:

- The starting hypothesis of proof is representethk conceptual grapBh in figure 9.

Product : x Product : y

Geometry: GA @ @
@ Activity: Manufact] Activity:Manufact2

attribute)¢

A

Geometry:GA

Figure 9 : Graph Gh of the starting hypothesisramp

- The result of the application of ruR to graphGh is represented by the conceptual
graphGcin figure 10.

- T - . - constraint violated
- T~

P s ~
2 < ~

y ~
@ ; Product : x‘ Product : y N
! 1
Geometry: GA 1 @ @ i

@ Activity: Manufact:l Activity:Manufact2) 4

~ Ll
”
~ P
M 4

Requirements Verification with Graph Operations

Figure 10: Graph Gc resulting from the applicattbmule R, to graph Gh reveals one
contradiction

The condition of negative constraint Nc is the gnmgraph, which can be projected into
Gc. And this constraint is violated since theresesxa projection of Nc as a whole into
Gc. Itis a contradiction in terms, so the proopadperty Ris established.

The practical interest of this property is that theer wishing to produce parts with
specific features, will be able to choose the adegyworkshop to perform his task in
relation with the working environment. A major asse that the proposed approach
enables the end-user (an engineer or even an expddlow reasonings step by step,
directly on his own model-building.

In this manner, with the graph operations, we dke @0 verify a model through
mathematical argument (proving properties of spmatibn) and then we are more
likely to detect problems at an early stage ofeaystlevelopment. Indeed, the process of
constructing proofs can help us to understand éqairements upon a system, and can
assist us in identifying any hidden assumptionsafiinlatet al 2003). These proofs
guarantee that the system will always satisfy rtgpprties which are the facts, domain
rules and needs. Hence proofs at the specificastaige can make a significant
contribution to the quality of the system.

6. Conclusion

In this paper we propose a formal approach for tiadeand analysing requirements.
For this, we firstly represent the requirementghim form of precise specification of the
system’s properties with the description of its eemaélly known characteristics.
Secondly these specifications are translated irdnc€ptual Graphs which provide a
formal ontology for domain modelling and graph @tems that are logically founded.
These graph operations allow us to support forreakoning to verify the internal
consistency of specifications, and to validate rand specification against an informal
description of the system, by proving propertiesicwhit should exhibit. The
verification process of desirable requirementshe system to be developed is done
with the CoGITaNT software (Genest 2005) (a C++dlilp for developing conceptual
graphs applications, and a conceptual graph editoigh guarantees that a model of the
system will always satisfy its properties. Our wadn be considered as an innovative
approach in the sense that it allows the user (ffeydar analyst) to follow reasoning
processes in a graphical way. Finally, the mairtrdaution of the proposed approach is
that it helps in clarifying requirements expectédsystems, in improving the rigour of
the analysis performed and in making the reasostieygs explicit.

7. Related and Future Works

B. Kamsu Foguerand V. Chapurlat

Usually, some existing techniques are applied tuirements analysis. For example,
although goal-based methods, like KAOS approach (Mamsweerdet al 1998), has
proved to be useful for specifying purposeful sysepractical experience shows that
there are still a number of difficulties (eliminadi uninteresting and spurious goals is
difficult (Potts 1997), the goal discovery procéssot straight-forward (ELEKTRA
1998, Sutcliffe 2002), etc.). On the other hande ttroposed approach helps in
identifying the needed properties and the grapledapproach allowing to prove them,
in an organised and systematic way in order torenge adequacy of the future system
with a given set of objectives. Nevertheless itrige that Conceptual Graphs are not
intended for the modelling of non-functional prapes, such as usability, efficiency and
reliability. Neither is it intended for the desdrgn of temporal or concurrent behaviour.
Indeed, as a result other formal languages (StatecfHarel and Politi 1998), Albert Il
(Duboiset al 1994), Method B (Abrial 2005), I* (Chungt al 2000), etc.) which can
be used in combination (Paige 1998) with Concep@ralphs, would be better suited
for such modelling.

Our system will be presented to the end user iniridastry like a case tool driven
approach, with the conceptual graph "engine". Serjine may be hidden from the
non-technical end user, since there are some gaadlations from conceptual graphs
into natural language (Diallo 2000, Dieng and Co&805), which provides rich
representations (narrative descriptions of conjetttat non-technical end user find
appealing. Accordingly, and again similarly to watkne by (Gouyoret al 2004) in
automation engineering context, our graph-basedroagh would facilitate the
generation of purposeful system requirements |gpttirbetter quality systems (Rolland
and Prakash 2000) and therefore highlights a pragmse of formal analysis within an
engineering process.

The current application of our research is thegrggon into a connectionist-symbolic
framework (Vilhelmet al. 2000) aiming to support the decision-making preces
medical domain and future direction are relatethéocapitalization and the diffusion of
knowledge from experience feedback (Hermostial. 2005) in an organization.

Acknowledgments

This work was partially carried out with the coltabtion of the Montpellier Laboratory
of Computer Science, Robotics, and MicroelectrorfldRMM). Professor Francois
Prunet provides advice and many helpful commentaroearlier version of the work.
Special thanks to the anonymous referees for thigresting suggestions. | am grateful
to Professor Blaise Nsom Eyenga for many simulatiisgussions on the research in
general.

8. References

Abrial, J-R. The B-Book: Assigning Programs to Meanin@ambridge University
Press, 2005, ISBN : 0521021758.

ATHENA. Advanced technologies for interoperabilibf heterogeneous enterprise
networks and their applications, FP6-2002-IST-1ednated project description of
work; 2004.

Baget, J-F. and Mugnier, M-L. Extensions of Simpl®nceptual Graphs: the

Complexity of Rules and Constraint3ournal of Artificial Intelligence Research
(JAIR), vol. 16, 2002, pages 425-465.

Requirements Verification with Graph Operations

Berio, G., Requirements analysis: initial core ¢nngs and architecture, Deliverable
D3.1 of the UEML Project, Unified Enterprise Modwi Language Thematic
Network, IST-2001-34229, May 2003, document avdddiom the UEML portal at:
http://mwww.ueml.org..

Bos,C., Botella, B. and Vanheeghe, P. Modelling &naulating Human Behaviours
with Conceptual Graphs. Proceedings Bifth International Conference on
Conceptual Structures, ICCS9Beattle, Washington, USA, August 3-8, 1997.
Lecture Notes in Computer Science 1257, Pages 89pSpringer 1997.

Bray, K. An Introduction to Requirements EnginagriAddison-Wesley, August 2002.

Bubenko J., Rolland C., Loucopoulos P., and De Amélis V. "Facilitating Fuzzy to
Formal Requirements Modelling", Proc. Int. Conf. Bequirements Engineering
(ICRE), Colorado Springs, USA, 1994.

Chapurlat,V., Kamsu Foguem, B. and Prunet, F. Apény Relevance Model and
associated Tools For System Life-Cycle Managemeni5" IFAC World Congress
on Automation Control (B'Q2Barcelona, SPAIN, 21-26 July 2002.

Chapurlat,V., Kamsu Foguem, B. and Prunet, F. pris&¥ Model Verification and
Validation: an ApproachlFAC Annual Review in ControR003, volume 27, n° 2,
pp. 185-197. Publisher: Elsevier Science.

Chapurlat,V., Kamsu Foguem, B. and Prunet, F. Arfab\erification Framework and
Associated Tools for Enterprise Modeling: Applicatito UEML, Computers in
Industry, In Press, Corrected Proof, Available malY September 2005.

Chein, M. and Mugnier, M-L. Conceptual Graphs: Fameéntal Notions. Atrtificial
Intelligence Review, volume 6-4, pages 365-406,2199

Chein, M. and Mugnier, M-L. Positive Nested Concapgraphs. In D. LUCKOSE, H.
DELUGAH, M. KEELER, L. SEARLE, and J.F. SOWA, puitiers. Conceptual
Structures: Fulfilling Peirce’s Dreamproceedings of the fifth International
Conference on Conceptual Structures (ICCH'Beattle, USA, volume 1257 of
Lecture Notes in Artificial Intelligence, pages 969, Springer Verlag, 1997.

Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. Nbanctional Requirements in
Software Engineering. Boston: Kluwer Academic Pshmirs, 2000.

Cortes, L.A., Eles, P. and Peng, Z. Modeling anan&d verification of embedded
systems based on a Petri net representation. Jadr8gstems Architecture, Volume
49, Issues 12-15, December 2003, Pages 571-598.

Diallo, D. Assistance to validation through paragsing of formal specification written
in B. (in French). PhD thesis, University of Nant2800.

Dieng, R. and Corby, O. « Conceptual Graphs for &#im Web Applications », In:
Proc. of the 13th Int. Conference on Conceptualcitres (ICCS'2005), F. Dau, M.
L. Mugnier, G. Stumme (editors), Kassel, Germanyy 17-23, 2005, Springer-
Verlag, LNAI 3596, pp. 19-50, 2005.

Dubois, E., Du Bois, P., Dubru, F. and Petit, MgeAt-Oriented Requirements
Engineering: A case Study using the ALBERT Languageoc. of theFourth
International Working Conference on Dynamic Modhgjland Information System
DYNMOD-IV, A. Verbraeck, H.G. Sol, and P.W.G. Botgeditors),
Noordwijkerhoud, The Netherlands, september 28t904.

Ducq V., Chen D., and Vallespir, B. Interoperapilitn enterprise modelling:
requirements and roadmap. Advanced Engineeringrirdtics, Volume 18, Issue 4,
October 2004, Pages 193-203.

B. Kamsu Foguerand V. Chapurlat

Easterbrook S. M., Lutz, R. Covington, R. Kelly Ampo, Y. And Hamilton, D.
"Experiences Using Lightweight Formal Methods foedRirements Modeling".
IEEE Transactions on Software Engineering, Spdsglie on Formal Methods in
Software Practice, vol. 24, (1), 1998.

Ehrig, H. and Mahr, B. Fundamentals of algebrgecsfications 1: Equations and
initial semantics, volume 6 of EACTS Monographs ®heoretical Computer
Science. Springer, Berlin, 1985.

ELEKTRA consortium. DEMETRA: System Design Speafion for PPC,
ELEKTRA deliverable, March 1998.

Fox, M.S. and Gruninger, M. "Enterprise Modelling\l, Magazine, AAAI Press, Fall
1998, pp. 109-121.

Genest, D. CoGITaNT Version-5.1 — Reference Maribatument available online at:
http://cogitant.sourceforge.net.

Girard, P. and Doumeingts, P. GRAI-Engineering: ethad to model, design and run
engineering design departmentsiternational Journal of Computer Integrated
Manufacturing Volume 17, Number 8, Pages: 716-732 / Decemb@# Z0aylor &
Francis: London).

Gouyon, D. Petin, JF. and Gouin, A. Pragmatic apgidor modular control synthesis
and implementation. International Journal of PraamcResearch, vol. 42, n° 14, pp.
2839-2858, ISSN 0020-7543, July 2004.

Grady, J. System Validation and Verification, CRI@9$3, 1997.

Guarino, N. Understanding, Building, and Using Qogees: A Commentary to "Using
Explicit Ontologies in KBS Development”, by van [$g&i Schreiber, and Wielinga.
International Journal of Human and Computer Stydies 46, 1997, pp. 293-310.

Harel, D. and Politi, MModeling Reactive Systems with Statecharts: TheflEWVIATE
Approach McGraw-Hill, 1998, ISBN 0-07-026205-5.

Haumer, P., Pohl, K. and Weidenhaupt, Requirements Elicitation and Validation
with Real World Scene$EEE Transactions on Software Engineering, Vdl, Ho.
12, Special Issue on Scenario Management, Deceh9i98:

Heitmeyer, C. L., Jeffords, R. D. and Labaw, BAatomated Consistency Checking of
Requirements Specifications. IEEE Transactions aftw@&re Engineering and
Methodology, vol. 5, no 3, pp. 231-261, 1996.

Hermosillo Worley, J., Rakoto, H., Grabot, B. andn@ste, L. A competence approach
in the experience feedback process, in "Integrakiignan Aspects in Production
Management", Series: IFIP International Federafwrinformation Processing, Vol.
160, Zulch, Gert; Jagdev, Harinder S.; Stock, Bat(Eds.) 2005, Kluwer Academic
Press.

Gramlich, B. Strategic Issues, Problems and Chgdlenn Inductive Theorem Proving.
Electronic Notes in Theoretical Computer Scienceluvhe 125, Issue 2, 15 March
2005, Pages 5-43.

INCOSE SE Handbook Working Group, System Engingeidandbook, A « How To »
Guide For All Engineers, July 2004.

INTEROP. Interoperability research for networkedtegprises applications and
software, network of excellence, proposal part BrilA&23 2003.

Hoare, C. A. R. Communicating Sequential Procesaestice Hall, 1985.

Requirements Verification with Graph Operations

ISO 10314. ‘Reference Model for Shop Floor Productstandards’, Technical report
10314, Part 1, ISO TC 184/SC5/WG1 N126 and PaiS® TC 184/SC5/WG1
N160. 1990.

Jackson, M. Problems, Methods and Specialisat®oftware Engineering Journal
Volume 9, Number 6, pages 249-255, November 198iea and abridged in IEEE
Software ,Volume 11, Number 6, pages 57-62, Noverh®84.

Jackson, D. Lightweight Formal Methods. Proceedigkternational Symposium of
Formal Methods Europe, Berlin, Germany, March 122081.

Kamsu Foguem, B. Complex Systems Properties Maodelland Verification:
Application to Enterprise Process Analysis (in Et®n PhD thesis, University of
Montpellier 11, July 2004.

Kamsu Foguem, B., Chapurlat,V. and Prunet, F. [pnts Model Verification : a
Graph-based Approach. Symposium on Discrete Evantsindustrial and
Manufacturing SystemsCESA’03,IEEE/SMC multiconference on Computational
Engineering in Systems Applicatiohdle, France, July 2003.

Kosanke, K., Jochem, R., Nell, J.G. and Ortiz BasEnterprise Inter- and Intra-
organisational Integration - Building an Internatial ConsensyKluwer Academic
Publishers, 2003, ISBN 1-4020-7277-5.

Lamport, L. Proving the correctness of multiprocpssgrams. IEEE Transactions on
Software Engineering, SE-3(2):125-143, March 1977.

Maiden, N.A.M. and Hare, M. Problem domain categ®iin requirements engineering.
International Journal of Human-Computer Studié8(3): 281-304, September 1998.

Manna, Z. and Pnueli, A. The Temporal Logic of Riz@cand Concurrent Systems:
Specification. Springer-Verlag, 1992.

Martin J. N., System Engineering Handbook, CRC {r&997.

Molina, A., Panetto, H., Chen, D., Vernadat, F. &kitman, L. Enterprise Integration
and networking: Milestone Report, TC 5.3 Enterpilisiegration and Networking,
Proceedings of ICEIMT2004nternational Conference on Enterprise Integration
and Modeling Technology¥anada, 2004.

Monin, J-F.Understanding Formal MethodsSpringer-Verlag, January 2003.

Morel G., Pétin J. F., Lamboley P. Formal speciiaa for manufacturing systems
automation; 10th IFAC/INCOM Symposium, Vienna, Atet2001.

Morel G., Panetto H., Zaremba M. and Mayer, F. Macturing Enterprise Control and
Management System Engineering: paradigms and gseresIFAC Annual Review
in Control, Volume 27, Issue 2, 2003, Pages 199-209.

NAS (National Airspace System). NAS System EngimgerManual Version 3.0.
Published in September 2004. Document is availabldo
http://www.faa.gov/asd/SystemEngineering/

Paige, R.F. Heterogeneous Notations for Pure Fomethod IntegrationFormal
Aspects of Computint0(3): 233-242, Springer-Verlag, June 1998.

Petit, M. and Doumeingts, G., Enterprise modelbtate of the art, Deliverable D1.1 of
the UEML Project, IST-2001-34229, November 2002cDuent available at UEML
portal: http://www.ueml.org.

Potts, C. Fitness for use : the system quality thetters most. Proceedings of the Third

International Workshop on Requirements EngineeriRgundations of Software
Quality REFSQ’97, Barcelona, pp. 15-28, June 1997.

B. Kamsu Foguerand V. Chapurlat

Ueda, K. Synthesis and Emergence - research evendtrtificial Intelligence in
Engineering15, pp 321-327, published by Elsevier Science 2001.

Robertson S. and Robertson J. Mastering the raqgaints process. Addison-Wesley,
1999.

Rolland C., Ben Achour C., Cauvet C., Ralyté Jicldte A., Maiden N.A.M., Jarke
M., Haumer P., Pohl K., Dubois E. and Heymans R.Ptoposal for a Scenario
Classification Framework". Requirements Engineediagrnal, Vol; 3, No. 1, pp. 23-
47, 1998.

Rolland C., and Prakash N. From Conceptual ModglionRequirements Engineering.
Special Issue of Annals of Software Engineering "@omparative Studies of
Engineering Approaches for Software Engineerin@,pf.151-176, 2000.

Roussel J. M., Faure J. M., Lesage J. J. and Me#linAn algebraic approach for
dependable logic control systems design. InternatioJournal of Production
Research; vol. 42, n° 14, pp: 2859-2876, July 2004.

Shiu, S. and Sankar, K.P. Foundations of Soft Based ReasonindViley Series on
Intelligent Systems274 pages, Publisher: Wiley-Interscience (March2604),
ISBN: 0471086355.

Sowa, J.FConceptual structures: information processing imehand machineNew
York (U.S.A.): Addison-Wesley, 1984.

Sowa, J.F. and Zachman, J.A.., Extending and Fasmgl the Framework for
Information Systems ArchitecturéBM Systems Journalvolume 31, numéro 3,
pages 590 - 616, 1992.

Sowa, J.F.Knowledge Representation: Logical, PhilosophicahdaComputational
FoundationsBrooks Cole Publishing Co., Pacific Grove, CA, @00

Spivey, JM.The Z Notation: A Reference Man{ahd Edition). Prentice Hall, 1992.

Sutcliffe, A. User-Centred Requirements Engineerifigeory and Practice. Springer,
ISBN: 1852335173, 2002.

Van Lamsweerde, A., Darimont, R. & Letier, E. Maimag conflicts in goal-driven
requirements engineering. IEEE Transactions on&oét Engineering, 24(11): 908-
926, 1998.

Vernadat, F. B., Enterprise Modeling and Integrati®rinciples and Applications,
(London: Chapman & Hall), 1996.

Vernadat, F.B. UEML: towards a unified enterprisedalling language. International
Journal of Production Research, Volume 40, Numbé&r Pages: 4309 — 4321 /
November 20, 2002.

Vilhelm, C., Ravaux, P., Calvelo, D., Jaborska, @hambrin, M-C., and Boniface, M.
Think!: a unified numerical-symbolic knowledge repentation scheme and
reasoning system. Atrtificial Intelligence, Vol. 1160. 1-2, pp. 67 - 85, January
2000.

Volker, N. and Kramer, B.J. Automated verificatiohfunction block-based industrial
control systems. Science of Computer Programmirgjuiie 42, Issue 1, January
2002, Pages 101-113.

Watson, I. Applying Case-Based Reasoning: Techniques for fnser Systems
Morgan Kaufmann: San Mateo, CA, US, 1997.

Young, R. The Requirements Engineering Handbookedhr House Publishers, ISBN
1580532667, 2004.

