

Requirements Modelling and Formal Analysis using Graph

Operations

B. KAMSU-FOGUEM∗† and V. CHAPURLAT‡

†Laboratoire Génie de Production - Ecole Nationale d'Ingénieurs de Tarbes
47, avenue d’Azereix - BP 1629, 65016 Tarbes Cedex France

Tel : (33) 6 24 30 23 37 Fax : (33) 5 62 44 27 08

‡LGI2P - Site EERIE de l'Ecole des Mines d’Alès, Parc scientifique George Besse,
30035 Nîmes cedex 1 France

Abstract
The increasing complexity of enterprise systems requires a more advanced analysis
about the representation of services expected than is currently possible. Consequently,
the specification stage, which could be facilitated by formal verification, becomes very
important to the system life cycle. This paper presents a formal modelling approach,
which may be used in order to better represent the reality of the system and to verify the
awaited or existing system’s properties, taking into account the environmental
characteristics. For that, we firstly propose a formalization process based upon
properties specification, and secondly we use Conceptual Graphs operations to develop
reasoning mechanisms of verifying requirements statements. The graphic visualization
of these reasoning enables us to correctly capture the system specifications by making
easier to determine if desired properties hold. It is applied to the field of the Enterprise
modelling.

Keywords:
Enterprise Modelling, Conceptual Graphs, Properties Specification, Formal Verification

1. Introduction

Enterprise processes become increasingly complex taking into account not only
classical technical and technological aspects but also social dependencies and the
constant changing economic environment. Engineers need to model a given process in
order to better understand it; the goal must be an ongoing process optimization to test a
new control policy. Then the description and the verification and/or validation of each
stage of an enterprise process specification become crucial, since they condition the
quality, adequacy and efficiency of the services produced. Thus our approach
contributes to its profitability by a central thread: modelling the process knowledge in a
formal, provable, testable and re-usable form. This approach can be considered as a new
way for Enterprise Modelling (Fox and Gruninger 1998) that aims to support
understanding of what happens in an enterprise, support design and analysis of a
business entity, improve knowledge level about the things of the enterprise and help to

∗ Corresponding author. Email: Bernard.Kamsu-Foguem@enit.fr

B. Kamsu Foguem� and V. Chapurlat

define more suitable models for decision-making activities both in the engineering and
operation phases of the enterprise.

1.1 Modelling issues for integration and change management

Researchers draw distinctions between Systems Engineering and Requirements
Engineering. Systems Engineering is “a discipline that concentrates on the design and
application of the whole (system) as distinct from the parts. It involves looking at a
problem in its entirety, taking into account all the facets and all the variables and
relating the social to the technical aspect” (NAS 2004). Requirements Engineering is a
branch of systems engineering that addresses translation of stakeholder needs into
system requirements and facilitates the process by which the specification of systems
and/or components satisfies those requirements (Young 2004). In order for efficient
management of change to occur, enterprises have to cope carefully with the efficiency
of the enterprise engineering or reengineering process. Business Processes modelling is
an important part of the engineering effort, and modelling languages are essential
components used at each step of Business Processes engineering methodologies (Petit et
al. 2002, Girard and Doumeingts 2004). Models enable communication among the
various people involved in the process in order to master the enterprise system’s
complexity, to understand and analyse the situation, to re-engineer and to ultimately
control or monitor the system. Moreover, enterprise modelling is a prerequisite to
enterprise integration (Molina et al. 2004, Kosanke et al. 2003) because if parts of the
enterprise are meant to communicate with each other, they should share some common
models to enable better performance and quality results (see Vernadat (1996, 2002) for
a detailed motivation for enterprise modelling). Also, enterprise systems and
applications need to be interoperable in order to achieve seamless business interaction
across organisational boundaries and thus realise networked organisations (ATHENA
2004, INTEROP 2003, Ducq et al. 2004).
Consequently, part of the re-engineering process efficiency concern lies in the
efficiency of enterprise modelling process itself since models are used at all stages of
this process. This need for efficiency imposes requirements (precision, easiness and
expressiveness) on the languages used for producing models and (re-using knowledge
about the existing system and generic knowledge reuse) on the process of modelling and
designing systems.

1.2 Analysing Requirements Models

The primary measure of success of a requirement modelling approach is always done in
terms of the kind of analysis and reasoning it offers. The analysis techniques can
therefore be used to generate useful information from the models produced. Techniques
such as goal driven approaches (like KAOS (Van Lamsweerde et al. 1998)),
specification animation (Haumer et al. 1998) and the use of scenarios (like CREWS
(Rolland et al. 1998, Sutcliffe 2002)) have received considerable attention in industrial
applications, but they suffer from a lack of precision or exhaustiveness in analysis.
Among many key elements in making the best possible decision in a requirement
engineering project, formal approaches appear well suited in an early phase of a project
life-cycle for checking global coherence and partial consistency between all the various
requirements and specifications of different functions of the system (Morel et al. 2003).
These formal approaches (Monin 2003), based upon mathematical constructs and set-
theory notation, can be used to produce precise, unambiguous documentation, in which
information is structured and presented at an appropriate level of abstraction.

Requirements Verification with Graph Operations

Techniques such as model checking and theorem proving have a long tradition in formal
specification languages like algebraic specifications (Ehrig and Mahr 1985), Z (Spivey
1992), CSP (Hoare 1985), Petri nets (Cortes et al. 2003), or temporal logics (Manna and
Pnueli 1992). Despite of their relative maturity within software engineering research,
there are very few practical applications to enterprise modelling and automation systems
(Völker and Krämer 2002). Reasons for this include the complexity of formal
specification techniques and the lack of training of enterprise engineers in applying
them. Furthermore, there are also well-known limitations of formal verification such as
the state-explosion problem within model checking.
This work attempts to bridge the semantic gap between the engineer and the formal
specification by allowing results of an analysis to be easily reviewed for relevance. In
such circumstance we wish to carry out exhaustive checks (models) of systems by using
the elements (formal specification, formal reasoning, mathematical proof) of a formal
approach (figure.1 adapted from (Grady 1997), summarizes this vision). In particular
the principle of mathematical proof is to describe the properties (functional, behavioural
and structural) needed in the form of a theorem and to show that it can be directly
deduced from the specification.

Needs
Real Word

Environment

Formal Specification .

(FS)

Formal Reasoning .

(FR)

Specifications .

(syntax)

 Models .

(semantics)
InterpretationRequirements

Properties

TuningInput

D
e

sc
rip

tio
n

FR

FS

Figure 1. Example of formal approach

2. Formalization of knowledge: proposed approach
To formulate requirements in industrial systems, informal specifications are generally
used, because they may seem, at first glance, easy to understand for the client. However,
many problems appear (Robertson and Robertson 1999, Bray 2002), having sometimes
heavy consequences on the development of the products:
− problems of communication between the client, the employee, and the manager

(specifications can be interpreted in several ways);
− documents are not rigorous enough, inducing operational difficulties for later

automatic processing;
− it is difficult to verify a specification, i.e to check that the requirements are correctly

modelled.
− inherently fault-prone, which can prove costly if faults are discovered later in the

integration and acceptance testing.
In front of such report, enterprise modelling has been developed for example, in the F3
project (Bubenko et al. 1994) to provide a set of models for understanding the

B. Kamsu Foguem� and V. Chapurlat

requirements and bridging the gap between ill-defined problems and application
situations as well as to define requirements of information systems formally and
precisely. In accordance with this point of view, the key idea of the work is to use a
formal approach like an alternative by giving the user (modeller or engineer) the ability
to use verification inside their task as a mean of reasoning and enriching his modelling
or system specifications. This section presents the whole hypothesis allowing to develop
a sequence of processing, as a solution to assist formalization. One major goal of the
proposed formal specification method should be to facilitate the transmission of
meanings through all the actors of an engineering systems process. For doing this, the
conceptual graphs (CG) are the chosen formalism for knowledge representation,
considering that they allow the representation of heterogeneous knowledge, a powerful
structuring mechanism (Sowa and Zachman 1992), and they express meaning in a form
that is logically precise, humanly readable and have a set of inference mechanisms
(Chein and Mugnier 1992).
The intention is to formalize knowledge about system’s requirements and to
communicate the resulting patterns back to the engineers for eventual more advanced
validation techniques and improvement. This way, we want to provide a framework
within which people can specify, develop, and verify system models in a systematic,
rather than ad hoc manner. Therefore, to answer the step of formalization, we propose a
sequence to process the initial requirements, likely to provide a formal specification.
The sequencing of the various stages (Natural Language (NL) requirements, properties
description, knowledge representation and reasonings with graph operations) of this
methodology (figure.2), represents the implementation of our objective, balanced by the
whole of the hypothesis stated above.

NL -> Spec

Interpretation

Graph operations

Validation
Improvement/
modification

Natural Language (NL)
Requirements

Properties description

Reasoning mechanisms

CG Representation

Figure 2. Methodology used for the construction of the formal specification

3. Properties description

3.1. Properties analysis

At the sight of the traditional problems arising at any requirements modelling and
reasoning stage (heterogeneous knowledge, ambiguity, different points of view,
hierarchical organisation, the system objective, etc), a formal model has been elaborated
(Chapurlat et al. 2002) making possible the description of properties for requirements

Requirements Verification with Graph Operations

specification. A Property Reference Repository ((Kamsu 2004, Chapurlat et al. 2005)
(not presented here) allows the task of selecting and specifying the relevant properties
(of the pointed out system and of the model) to be simplified and thus accelerated. We
argued that most requirements engineering problem domains are instances of a tractable
set of object system models. Each model contains general features shared by all
instances of that problem domain. For instance, one model of the NATURE project
(Maiden and Hare 1998) contains general features of all resource hiring problem
domains, examples of which are lending libraries, car rental and video hiring. Another
contains general features of all object sensing problem domains. In our context,
classifying properties is one approach for helping practitioners identify and specify
common types of behaviours or situations. So, three kinds of properties are to be
described, axiomatic, system and model:

B. Kamsu Foguem� and V. Chapurlat

Axiomatic Properties: These are facts, rules and laws which concern the application
domain; the trivial knowledge about the application domain that the analyst can hardly
invent. The axiomatic properties permit detailed reasoning about what is assumed about
the domain, and they provide opportunities for requirements reuse within a domain.
Described here, are the objects that will have to be modelled by the system and their
attributes to fit one's surroundings. For instance, for a company that produces cars
according to the orders received from customers, we have the following axiomatic
properties:
- The enterprise consists of a physical system, a decision system and an information

system. The control system, which is composed of the decision and information
systems, controls the physical system and enables the enterprise as whole to reach
its goals.

- The purchase of a new kind of machine by the manager influences the quality of
products provided by the enterprise

- The growth in activities that are performed implies the increase in resource
consumption.

System properties: These properties rely on Systems Engineering (Martin 1997, Incose
2004) and express the characteristics of the target system (constraints, requirements,
behavioural, functional and structural) and its assigned objectives. Examples for such
properties are deadlock freedom, timing consistency and limited capacity resources.
When developing a concurrent object-oriented application, deadlock freedom of the
interaction is often a major requirement. Timing consistency is of importance for real-
time systems. There, it must be assured that certain process are performed within a
given pre-defined time span. Limited capacity resources are often a characteristic
feature of embedded applications. Lamport in (Lamport 1977) described two others
categories of system properties: safety (something bad never happens) and liveness
(something good eventually happens).

Model properties: These properties characterize the features of the modelling language
used (basic constructs, syntactic principles and semantic rules). Also, they enable the
user to establish what to expect from the model: correctness, coherence, re-initialize
state, parallelism, synchronization, sequence, bounded marking, cycle, temporal aspects,
etc. This allows the user to translate some of the system’s properties corresponding to
requirements and expectations. For instance, if a highly serial process is operating too
slowly to meet an impending deadline, the user may describe some actions on the
model, such as to pipeline (i.e. release partial results to allow later tasks to start earlier)
or parallelize to increase concurrency.

The user (modeller or engineer) can select, from this list of possible properties types,
the ones that seem most important in his/her particular context. All these properties can
be easily written in conceptual graphs as formal representation. Also, formalization of
these properties as algebraic equations is reachable (Roussel et al. 2004), but the main
weakness of such method lies in the need to manipulate algebraic statements that are not
user friendly for enterprise engineers. Furthermore, to relate these classes of properties
to specifications solutions, we developed an orthogonal classification of various
properties that we linked to production system models to represent candidate
specifications solutions for different requirements. To exploit the Property Reference
Repository we developed computational models of analogical reasoning (Chapurlat et
al. 2005) to retrieve types and characteristics of properties that matched a new
application to enable reuse of knowledge about the problem domain and possible
specifications system solutions to it.

Requirements Verification with Graph Operations

3.2. Properties identification

At the methodological level, properties identification of complex systems is made by
the following means: requirements analysis in order to identify system needs, test
specifications to ensure completeness as well as functional and technical feasibility,
statement description of the system's objectives and constraints according to knowledge
of pattern-making methods, reading of technical documents and interview domain
experts. Likewise, it is necessary to study the role and impact of domain knowledge
(Jackson 1994). Since many new applications have the same requirements as earlier
ones, one possibility is to create generic domain properties as templates for
requirements of certain classes of applications (Maiden and Hare 1998). This facilitates
reuse in properties identification by providing sets of predefined generic properties for
developing system properties specification.
Furthermore, some international standards documents have been developed to aid
properties critiquing as well as specification. For example, in the manufacturing
domain, the ISO TC 184/SC5/WG1 Technical Report ISO 10314 (ISO 1990) provides a
clear methodology (a list of structured questions that could be posed) to identify
possible properties for areas of standards in support of integrated-shop-floor operations.

Figure 3 : Activity Model for Shop Floor Production (ISO 1990)

Complexity and complex systems, on the other hand, generally refer to a system of
interacting units which displays global properties not present at the lower level. An
emergent property cannot be understood simply by examining in isolation the properties
of the system’s components. However, one can find it by investigating the nature of the
rules governing interactions among system components (Ueda 2001). Others properties
can be characterized, both formally and empirically, using Case-based Reasoning
(reasoning technique that solves new problems by analogy to past problems, Shiu and
Sankar 2004). It may be used to identify some similarities between systems used for
different business purposes and to investigate their common properties and the general
principles that underlie them (Watson 1997). As a result, Case-based reasoning systems
can refer to a case base containing domain cases and find case that have characteristics

{TP, TF, VE, ST}

Information**

Information**

Information** Information**

Material* Material*

Resources Resources

Resources

Resources

* Actions {TP, TF, VE, ST} on Material are
defined only at level 1

 TP = Transport
 TF = Transform
 VE = Verify
 ST = Store

** Information include both control and data
components. Horizontal information flows
are restricted to data components.

Control information
Data
Material
Resources

Transform
Transport
Verify
Store

Section
Cell
Station
Equipment

Structured question: Should there be or are there already standards to relate:

with at the level ?

B. Kamsu Foguem� and V. Chapurlat

similar to those of the current one. The similarities may cover the entire case or only
certain points that led to a portion of the property. Cases can therefore be discovered
that may support some portions of the current case while opposing other parts.

4. The tool of representation and reasoning: Conceptual graphs
The conceptual graphs are a language of knowledge representation, introduced by John
Sowa in (Sowa 1984) and extended in (Sowa 2000, Baget and Mugnier 2002). Such
language permits at the same time to define a vocabulary (i.e. ontology) and to use this
vocabulary to conceptualize facts. Conceptual Graphs can be considered as a
compromise representation between a formal language and a graphical language
because it is visual and has a range of reasoning processes. Since, enterprise modelling
demands correct models of the system and of its goals that are not easy to capture in an
industrial context (Morel et al. 2001), we will use conceptual graph formalism to assist
the requirements specification phase and express formally knowledge.

 4.1 Formalism presentation

Definition : A simple conceptual graph is a finite, connected, directed, bipartite graph
consisting of concept nodes (denoted as boxes), which are connected with conceptual
relation nodes (denoted as circles). In the alternative linear notation, concept nodes are
written within []-brackets while conceptual relation nodes are denoted within ()-
brackets.

A concept is composed by a type and a marker [<type>: <marker>], for example
[Resource: computer2]. The type of concept represents the occurrence of object class.
They are grouped in a hierarchical structure called a concept lattice showing their
inheritance relationships. The marker specifies the meaning of a concept by specifying
an occurrence of the type of concept. They can be various natures, in particular
individual, generic (symbol ‘*’ within the marker), quantifiers, or sets (the latter by
using {}-brackets within the marker). The term ‘{*}’ denotes a set of zero or more
elements, additional cardinality constraints can be expressed, for example, by ‘{*}@5’
(set of five elements) or ‘{*}@>4’ (set of more than four elements). It is also possible
to pair the number with a unit of measure, for example the term ‘@96h’ means ninety-
six hours.
A conceptual relation binds two or more concepts according to the following diagram
[C1]←(relation’s name)←[C2] (means ‘C1 is in relation with C2’). Each relation has a
signature, which fixes its arity (the number of arguments it takes) and gives the
maximum types of concept available, to which a relation of the type can relate. The sub-
relation definition is sometimes necessary to provide more details in the semantic
representation, and then a relation lattice is established.
Before representing knowledge with conceptual graphs, it is first necessary to determine
an ontology (Guarino 1997) dedicated to what we need to represent. Thus, the
formalism chosen here was adapted to take into account the modelling concepts of the
enterprise (Berio 2003) by the construction of a support formed by a set of concepts,
structured in a lattice and a set of relations between these concepts. The type used for
concepts and relations must be declared or defined in our formal vocabulary where the
terms may have associated constraints (e.g. signatures for the relation types) and
definitions (e.g. definitions of necessary and/or sufficient conditions) and thus may be
linked to other terms by different relations (e.g. given or calculated sub-assumption
relations).

Requirements Verification with Graph Operations

Graph:U; nature: Manufacturing Order
[Enterprise: Num1]-
 {

 (Consist_Of)->[information_system: Num2]-
 {<-(AGNT)<-[issue:*]->(OBJ)->[message:Num4];}

 (Consist_Of)->[decision_system: Num3]-
 {
 (AGNT)<-[receive:*]->(OBJ)->[message:Num4];}
 (AGNT)<-[give:*]-
 {
 (OBJ)->[order:Num5]
 (ADDR)->[physical system: Num6]
 };

 (Consist_Of)->[physical_system: Num6]-

 { (AGNT)<-[carry_out:*]->(OBJ)->[order: Num5];};
 };

Figure 4. Graph U in the linear notation for specification of a ‘Manufacturing Order’

The Nested Conceptual Graphs (Chein and Mugnier 1997) enables association of any
concept node with a partial internal description. In addition nesting allows to create
several representation levels, to organise these levels of detail into a hierarchy and thus
to zoom on certain concepts by adding internal information to them. An important
advantage of nested graph models is the option of partitioning the reasoning tasks into
separate metalevel stages, each of which can be axiomatized in classical first-order
logic. For that, it is defined a mathematical operator that translates conceptual graphs
into formulas in the first-order predicate calculus (relations become n-ary predicates,
concepts become unary predicates, individual markers become constants and generic
markers become existentially quantified variables).

4.2. Conceptual Graph Operations

Conceptual graph operations provide a set of the reasoning mechanisms and define
selected constraints of the graphs representing domain knowledge and facts. All these
operations are mathematically founded both on logics (sound and complete) and graph
theory (Sowa 1984, Chein and Mugnier 1992). Sowa has defined four elementary
operations on the conceptual graphs, called canonical formation rules, which allows us
to handle them easily and to derive canonically from other graphs: copy, restriction,
simplification and joint. For instance, with joint operation two graphs having a common
concept node can be merged to form one graph by sharing this common concept.

There exists another kind of handling operation called projection that is the fundamental
element of a reasoning process for conceptual graphs. The projection search of a graph
G in a graph H can be seen as the inclusion search of the information represented by G
in H. This leads to a calculation in the specialization between the two graphs.

The example given in Figure 5, shows an application of the projection mechanism. This
figure shows a situation in which :

• an activity called “to produce” has in input the rivet12 ,

• there is another activity called “to record” that has in output the order C17,

• with the request graph, we want to know if there exists an activity which has a given
order in output.

B. Kamsu Foguem� and V. Chapurlat

Figure 5 : Application of a projection

In this example, a request (in the form of a question graph) on the knowledge base
consists in seeking if the graph question can be proved starting from the knowledge
base. Beginning from a particular situation description and by taking as requests the
states or the events, we can prove the presence of a property or the occurrence of a
violated requirement. When a requirement is not satisfied and projection failure occurs,
the reasoning steps can help diagnose their underlying causes, and suggest specific
interventions for resolving them. Such reasoning with the projection (a graph matching
operation) is interesting since the same language is used at interface and operational
levels.
There exist two other kinds of possible use for projection in order to validate
(constraints) or transform (graph rules) a graph in another one. Graphs operations like
these may have been established by the automated reasoner of a knowledge-based
system or by the engineer. Their explicit representation enables the analysis to give
unambiguous information about the enterprise modelling process (causal and revision
contexts), to draw the engineer’s or machine agent’s attention to data entries which do
not exactly fit into the current view of the enterprise’s situation (conflict contexts).
Consequently, we are able to support the modelling process by providing knowledge
that is highly enterprise-adapted, valid only for one particular part of enterprise (intra-
enterprise similarity contexts, enterprise-specific heuristics).

4.3. Reasoning with graph rules

The conceptual graph rules (Bos et al. 1997, Kamsu et al. 2003) allow one to add new
knowledge. The graph rule is composed of a hypothesis and a conclusion, and is used in
the following classical way: given a simple graph, if the hypothesis of the rule projects
to the graph, then the information contained in the conclusion is added to the graph.
Rules are split into static rules and dynamic rules:

Activity

Situation

Activity: to produce input Part: rivet12

Activity output

Request

Order

Order

Activity: to produce Order: C17 Activity: to record

output

Activity: to produce

Order: C17

output

failure success

output Order: C17Activity: to record

Order: C17

Activity: to record

Order: C17

Activity

Situation

Activity: to produce input Part: rivet12

Activity output

Request

Order

Order

Activity: to produce Order: C17 Activity: to record

output

Activity: to produce

Order: C17

output

failure success

output Order: C17Activity: to record

Order: C17

Activity: to record

Order: C17

Requirements Verification with Graph Operations

� Static rules express some immutable domain laws, and their uses complete words
descriptions. In order for an enterprise model to support common-sense query
processing, it must provide a set of rules of deduction, known as axioms. Here, let
‘works-for’ be a binary relation, whereby we require an axiom stating that ‘works-
for’ is transitive :

x works-for y AND y works-for z IMPLIES x works-for z.

� Dynamic rules define possible transitions from one word to another. The successor
of a valid word is obtained by a single application of a transformation rule on this
word. From this perspective, we specify some dynamic rules in order to describe
precisely how the actors will interact with the enterprise. Some new information can
be introduced: the actions performed by the actors who interact with the enterprise,
the operations executed in response to an action by the enterprise and the observable
states (by some actors) of the enterprise. Like that, each dynamic rule is defined as a
triplet action[condition]/response. In the case of car factory, the example (figure 6)
is as follows :
‘A customer places an order for a car [car available] / the enterprise does home

deliveries within 96 hours’.

Figure 6: Example of a dynamic rule

4.4. Graph constraints

A constraint defines conditions for simple graph to be valid (Baget and Mugnier 2002).
It is composed of a conditional part and a mandatory part. The condition must be a
simple graph. In particular, a condition can be an empty graph. Roughly speaking, a
graph satisfies a constraint if for every projection of its conditional part, its mandatory
part also projects to the graph. We consider positive and negative constraints. A positive
constraint expresses a property such as ‘if information A is present, then information B
must also be present’. For example, any failing resource must be repair or must be
substitute for new one. A negative constraint expresses a property such as ‘if
information A is present, then information B must be absent’. For example, every
operational process must not have two incompatibles activity or a repairing failure
context must be viewed as being inconsistent with some diagnosis. This kind of
property express that data are viewed to be inconsistent or that some activities may raise
conflicts. After possible conflicts have been identified, the next step is to use the
information stored in the Property Reference Repository (section 3) in order to find
ways for avoiding or detecting the conflicts. Although conflicts usually are resolved

Dynamic-rule (delivery)

Condition

Car attribute available

Action

become-true agent order object CarCustomer

Response

agent deliver object CarEnterprise

lead time Period: @ 96h

receiver Customer

Dynamic-rule (delivery)

Condition

Car attribute available

Action

become-true agent order object CarCustomer

Response

agent deliver object CarEnterprise

lead time Period: @ 96h

receiver Customer

B. Kamsu Foguem� and V. Chapurlat

after some time (by having more information about an enterprise model), they should be
represented for a better understanding of the decision process.

Figure 7: Example of a graph constraint

In fact, the constraints can be applied to express mathematical coherence in the case of
model analysis or to ensure and/or restore consistency of the systems specifications.
Indeed, some of the systems specifications based upon users needs might be
constraining from a technical and/or a domain point of view. Hence, constraints are
used to check that a specification provides an accurate account of stakeholder
requirements.

5. Case Study: a product development process
In this section, we will demonstrate how the approach described in this paper can be
used to systematically specify and verify properties (or point out possible gaps) in an
experimental case of a business process. The approach begins with a construction of
abstract description (i.e. a model of the product development process) that is amenable
to interpretation. The construction of such model may be done with a modelling
language like UEML (Berio 2003). Particularly, the model of the product development
process typically includes a “design product” activity, followed by a “manufacture
product” activity, which, in turn, is followed by a “deliver product” activity. Figure 8
depicts a simplified but accurate model of this process, based on the descriptions
contained in (Kamsu 2004). The model consists of boxes, which describe process
activities, and lines, which describe various dependency relationships, that is,
constraints that must hold true in order for the process to succeed.

This model has been characterized by several properties:
- If one then uses a type of manufacturing activity, Then the material used and the

geometry of the produced objects have indissociable features of this activity.
- The output of the “design product” activity must be consistent with the capabilities

of the “manufacture product” activity.
- The shape attributes of the output and input of the “deliver product” activity must be

equal.
- If several activities are causing wasteful overheads by frequently trading the use of a

scarce shared resource, Then change the resource sharing policy such that each
activity gets to use the resource for a longer time.

Despite Of

Succ

Repairing Failure Context

Non-amelioration

Diagnosis: {D1.. Dn}incompatible

Date:2/6/05 Date:3/3/05….

Start End
Ptim

Alterations and Repairs

Despite Of

Succ

Repairing Failure Context

Non-amelioration

Diagnosis: {D1.. Dn}incompatible

Date:2/6/05 Date:3/3/05….

Start End
Ptim

Alterations and Repairs

Requirements Verification with Graph Operations

- The deadlock situations (where several activities are each waiting for another one to
do something) are forbidden.

- The resource poaching situations (wherein high-priority activities are unable to
access needed resources because these resources they have already been reserved by
lower priority activities) are forbidden.

These properties can be applied in order to help design effectual new processes. They
can also be a helpful knowledge when verifying the model of studied business process.
Explicitly describing the properties is a necessary precondition not only for verifying
requirements, but also for resolving conflicts between stakeholders (person and team
that are responsible for or in some way have a vested interest in the requirement or
product under consideration).

Figure 8: A model of the "product development" process

5.1. Model verification

One central goal of model-based development is to enable analysis of the system, thus
ensuring the quality of the system already on the model level. That is, we want to reason
about certain properties of the system prior to the construction of the implementation.
The purpose of verification is to prove that, under a certain set of assumptions, a system
will adhere to a certain set of properties, for example the design requirements. For
verification of properties, first a suitable formal verification tool has to be chosen
capable of verifying the aspects associated to the property. Lightweight formal methods
(Easterbrook et al. 1998, Jackson 2001) (for instance a formal conceptual modeling)
show significant promise in this context, as they offer a way of uncovering major errors
without the burden of full proofs of correctness.
We will concentrate on model-based verification and the property verification is not
directly performed on model level. During property verification, the model is translated
into a suitable conceptual graph. In order to build the conceptual graph corresponding to
a given enterprise process model, we have developed and implemented an algorithm
(Kamsu 2004) allowing this translation, the important characteristics of the same is
described as follows: the concepts of process model are translated into the conceptual
graph according to their respective marker (individual, generic or variable) and relations
are translated in terms of typed relations, pre-conditions and post-conditions. Since the
transformation is isomorphic, we assume that the translation is semantic-preserving. As
a consequence, if the property is not fulfilled, we can conclude that the model itself does
not fulfil the property. The following section offers a view of this kind of verification,
wherein the reasonings are modelled using graph theory, and the anomalies are defined
in graph-theoretic terms.

5.2. Proof of properties

I3

Design
productInput I1 I2

Controls
flows

Designer
Engineer

Manufacture
product

OperatorMachine

Controls
flows

Output O3

Operator

Controls
flows

Deliver
product

Conveyor

I3

Design
productInput I1 I2

Controls
flows

Designer
Engineer

Manufacture
product

OperatorMachine

Controls
flows

Output O3

Operator

Controls
flows

Deliver
product

Conveyor

B. Kamsu Foguem� and V. Chapurlat

Let G is the graph representing a model, P is the query graph representing the property
to prove, R is a set of implicit knowledge rules and C be a set of constraints depending
from the domain. P is deduced from (G, R, C) if it is possible to obtain a valid graph G’
by a sequence of immediate transformations on G, such that P can be projected into G’.
In this case, the property P will be verified. In other case, conceptual graph theory offer
some means allowing us to establish what are the possible causes of non verification of
P. This permits to highlight some defaults or mistakes and then to improve the model.
This way, conceptual graphs provides inference mechanisms for proving properties by
using projection, rules and constraints. These demonstrative abilities make verification
knowledge possible. For example, if we consider the product development process, we
want to verify the following property P1 :

P1 ‘If one then uses a type of manufacturing activity then the material used and the geometry of
the produced objects have indissociable features of this activity’.

For the purpose of this verification task, one may use the negative constraint Nc and the
rule R1 presented below:

Nc ‘Two equivalent manufacturing activities must provide in output some identical products’

R1 ‘If two given products have different geometrical attributes then they are different’.

We will use the proof by reductio ad absurdum that is a method of proof which
proceeds by stating a proposition and then showing that it results in a contradiction, thus
demonstrating the proposition to be false. This proof by reductio ad absurdum of P1 in
natural language is as follows: supposing that in the production system, there are two
products x and y which are coming from two equivalent manufacturing activities, with
different geometrical attributes. The previous rule R1 tells us that the product x is
different to the product y. Consequently, there are two equivalent manufacturing
activities that produce different products. This result breaks the rule NC and belies our
starting hypothesis, so it all goes to prove property P1.
The sequences of proof are formalized in conceptual graphs as follows:
- The starting hypothesis of proof is represented by the conceptual graph Gh in figure 9.

Figure 9 : Graph Gh of the starting hypothesis to proof

- The result of the application of rule R1 to graph Gh is represented by the conceptual
graph Gc in figure 10.

Activity:Manufact2Activity: Manufact1 equivalent

output

attribute

attribute

different

Geometry:GA2

Geometry: GA1

Product : x Product : y

output

Activity:Manufact2Activity: Manufact1 equivalent

output

attribute

attribute

different

Geometry:GA2

Geometry: GA1

Product : x Product : y

output

Activity:Manufact2Activity: Manufact1 equivalent

output

attribute

different

Geometry: GA1

Product : x Product : y

output

different

constraint violated

Activity:Manufact2Activity: Manufact1 equivalent

output

attribute

different

Geometry: GA1

Product : x Product : y

output

different

constraint violated

Requirements Verification with Graph Operations

Figure 10: Graph Gc resulting from the application of rule R1 to graph Gh reveals one
contradiction

The condition of negative constraint Nc is the empty graph, which can be projected into
Gc. And this constraint is violated since there exists a projection of Nc as a whole into
Gc. It is a contradiction in terms, so the proof of property P1 is established.
The practical interest of this property is that the user wishing to produce parts with
specific features, will be able to choose the adequate workshop to perform his task in
relation with the working environment. A major asset is that the proposed approach
enables the end-user (an engineer or even an expert) to follow reasonings step by step,
directly on his own model-building.
In this manner, with the graph operations, we are able to verify a model through
mathematical argument (proving properties of specification) and then we are more
likely to detect problems at an early stage of system development. Indeed, the process of
constructing proofs can help us to understand the requirements upon a system, and can
assist us in identifying any hidden assumptions (Chapurlat et al. 2003). These proofs
guarantee that the system will always satisfy its properties which are the facts, domain
rules and needs. Hence proofs at the specification stage can make a significant
contribution to the quality of the system.

6. Conclusion

In this paper we propose a formal approach for modelling and analysing requirements.
For this, we firstly represent the requirements in the form of precise specification of the
system’s properties with the description of its externally known characteristics.
Secondly these specifications are translated into Conceptual Graphs which provide a
formal ontology for domain modelling and graph operations that are logically founded.
These graph operations allow us to support formal reasoning to verify the internal
consistency of specifications, and to validate a formal specification against an informal
description of the system, by proving properties which it should exhibit. The
verification process of desirable requirements of the system to be developed is done
with the CoGITaNT software (Genest 2005) (a C++ library for developing conceptual
graphs applications, and a conceptual graph editor) which guarantees that a model of the
system will always satisfy its properties. Our work can be considered as an innovative
approach in the sense that it allows the user (modeller or analyst) to follow reasoning
processes in a graphical way. Finally, the main contribution of the proposed approach is
that it helps in clarifying requirements expected of systems, in improving the rigour of
the analysis performed and in making the reasoning steps explicit.

7. Related and Future Works

B. Kamsu Foguem� and V. Chapurlat

Usually, some existing techniques are applied to requirements analysis. For example,
although goal-based methods, like KAOS approach (Van Lamsweerde et al. 1998), has
proved to be useful for specifying purposeful systems, practical experience shows that
there are still a number of difficulties (eliminating uninteresting and spurious goals is
difficult (Potts 1997), the goal discovery process is not straight-forward (ELEKTRA
1998, Sutcliffe 2002), etc.). On the other hand, the proposed approach helps in
identifying the needed properties and the graph-based approach allowing to prove them,
in an organised and systematic way in order to ensure the adequacy of the future system
with a given set of objectives. Nevertheless it is true that Conceptual Graphs are not
intended for the modelling of non-functional properties, such as usability, efficiency and
reliability. Neither is it intended for the description of temporal or concurrent behaviour.
Indeed, as a result other formal languages (Statecharts (Harel and Politi 1998), Albert II
(Dubois et al. 1994), Method B (Abrial 2005), I* (Chung et al. 2000), etc.) which can
be used in combination (Paige 1998) with Conceptual Graphs, would be better suited
for such modelling.
Our system will be presented to the end user in the industry like a case tool driven
approach, with the conceptual graph "engine". Such engine may be hidden from the
non-technical end user, since there are some good translations from conceptual graphs
into natural language (Diallo 2000, Dieng and Corby 2005), which provides rich
representations (narrative descriptions of contexts) that non-technical end user find
appealing. Accordingly, and again similarly to work done by (Gouyon et al 2004) in
automation engineering context, our graph-based approach would facilitate the
generation of purposeful system requirements leading to better quality systems (Rolland
and Prakash 2000) and therefore highlights a pragmatic use of formal analysis within an
engineering process.
The current application of our research is the integration into a connectionist-symbolic
framework (Vilhelm et al. 2000) aiming to support the decision-making process in
medical domain and future direction are related to the capitalization and the diffusion of
knowledge from experience feedback (Hermosillo et al. 2005) in an organization.

Acknowledgments
This work was partially carried out with the collaboration of the Montpellier Laboratory
of Computer Science, Robotics, and Microelectronics (LIRMM). Professor François
Prunet provides advice and many helpful comments on an earlier version of the work.
Special thanks to the anonymous referees for their interesting suggestions. I am grateful
to Professor Blaise Nsom Eyenga for many simulating discussions on the research in
general.

8. References

Abrial, J-R. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 2005, ISBN : 0521021758.

ATHENA. Advanced technologies for interoperability of heterogeneous enterprise
networks and their applications, FP6-2002-IST-1, Integrated project description of
work; 2004.

Baget, J-F. and Mugnier, M-L. Extensions of Simple Conceptual Graphs: the
Complexity of Rules and Constraints. Journal of Artificial Intelligence Research
(JAIR), vol. 16, 2002, pages 425-465.

Requirements Verification with Graph Operations

Berio, G., Requirements analysis: initial core constructs and architecture, Deliverable
D3.1 of the UEML Project, Unified Enterprise Modeling Language Thematic
Network, IST-2001-34229, May 2003, document available from the UEML portal at:
http://www.ueml.org..

Bos,C., Botella, B. and Vanheeghe, P. Modelling and Simulating Human Behaviours
with Conceptual Graphs. Proceedings of Fifth International Conference on
Conceptual Structures, ICCS'97, Seattle, Washington, USA, August 3-8, 1997.
Lecture Notes in Computer Science 1257, Pages 275-289, Springer 1997.

 Bray, K. An Introduction to Requirements Engineering, Addison-Wesley, August 2002.

Bubenko J., Rolland C., Loucopoulos P., and De Antonnellis V. "Facilitating Fuzzy to
Formal Requirements Modelling", Proc. Int. Conf. on Requirements Engineering
(ICRE), Colorado Springs, USA, 1994.

Chapurlat,V., Kamsu Foguem, B. and Prunet, F. A Property Relevance Model and
associated Tools For System Life-Cycle Management. In 15th IFAC World Congress
on Automation Control (B'02), Barcelona, SPAIN, 21-26 July 2002.

Chapurlat,V., Kamsu Foguem, B. and Prunet, F. Enterprise Model Verification and
Validation: an Approach. IFAC Annual Review in Control, 2003, volume 27, n° 2,
pp. 185-197. Publisher: Elsevier Science.

Chapurlat,V., Kamsu Foguem, B. and Prunet, F. A Formal Verification Framework and
Associated Tools for Enterprise Modeling: Application to UEML, Computers in
Industry, In Press, Corrected Proof, Available online 7 September 2005.

Chein, M. and Mugnier, M-L. Conceptual Graphs: Fundamental Notions. Artificial
Intelligence Review, volume 6-4, pages 365-406, 1992.

Chein, M. and Mugnier, M-L. Positive Nested Conceptual graphs. In D. LUCKOSE, H.
DELUGAH, M. KEELER, L. SEARLE, and J.F. SOWA, publishers. Conceptual
Structures: Fulfilling Peirce’s Dream, proceedings of the fifth International
Conference on Conceptual Structures (ICCS’97), Seattle, USA, volume 1257 of
Lecture Notes in Artificial Intelligence, pages 95-109, Springer Verlag, 1997.

Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. Non-Functional Requirements in
Software Engineering. Boston: Kluwer Academic Publishers, 2000.

Cortes, L.A., Eles, P. and Peng, Z. Modeling and formal verification of embedded
systems based on a Petri net representation. Journal of Systems Architecture, Volume
49, Issues 12-15, December 2003, Pages 571-598.

Diallo, D. Assistance to validation through paraphrasing of formal specification written
in B. (in French). PhD thesis, University of Nantes, 2000.

Dieng, R. and Corby, O. « Conceptual Graphs for Semantic Web Applications », In:
Proc. of the 13th Int. Conference on Conceptual Structures (ICCS'2005), F. Dau, M.
L. Mugnier, G. Stumme (editors), Kassel, Germany, July 17-23, 2005, Springer-
Verlag, LNAI 3596, pp. 19-50, 2005.

Dubois, E., Du Bois, P., Dubru, F. and Petit, M. Agent-Oriented Requirements
Engineering: A case Study using the ALBERT Language, Proc. of the Fourth
International Working Conference on Dynamic Modelling and Information System -
DYNMOD-IV, A. Verbraeck, H.G. Sol, and P.W.G. Bots (editors),
Noordwijkerhoud, The Netherlands, september 28-30, 1994.

Ducq V., Chen D., and Vallespir, B. Interoperability in enterprise modelling:
requirements and roadmap. Advanced Engineering Informatics, Volume 18, Issue 4,
October 2004, Pages 193-203.

B. Kamsu Foguem� and V. Chapurlat

Easterbrook S. M., Lutz, R. Covington, R. Kelly J., Ampo, Y. And Hamilton, D.
"Experiences Using Lightweight Formal Methods for Requirements Modeling".
IEEE Transactions on Software Engineering, Special Issue on Formal Methods in
Software Practice, vol. 24, (1), 1998.

 Ehrig, H. and Mahr, B. Fundamentals of algebraic specifications 1: Equations and
initial semantics, volume 6 of EACTS Monographs on Theoretical Computer
Science. Springer, Berlin, 1985.

ELEKTRA consortium. DEMETRA: System Design Specification for PPC,
ELEKTRA deliverable, March 1998.

Fox, M.S. and Gruninger, M. "Enterprise Modelling", AI Magazine, AAAI Press, Fall
1998, pp. 109-121.

Genest, D. CoGITaNT Version-5.1 – Reference Manual. Document available online at:
http://cogitant.sourceforge.net.

Girard, P. and Doumeingts, P. GRAI-Engineering: a method to model, design and run
engineering design departments. International Journal of Computer Integrated
Manufacturing, Volume 17, Number 8, Pages: 716-732 / December 2004 (Taylor &
Francis: London).

Gouyon, D. Petin, JF. and Gouin, A. Pragmatic approach for modular control synthesis
and implementation. International Journal of Production Research, vol. 42, n° 14, pp.
2839-2858, ISSN 0020-7543, July 2004.

Grady, J. System Validation and Verification, CRC Press, 1997.

Guarino, N. Understanding, Building, and Using Ontologies: A Commentary to "Using
Explicit Ontologies in KBS Development", by van Heijst, Schreiber, and Wielinga.
International Journal of Human and Computer Studies, Vol. 46, 1997, pp. 293-310.

Harel, D. and Politi, M. Modeling Reactive Systems with Statecharts: The STATEMATE
Approach. McGraw-Hill, 1998, ISBN 0-07-026205-5.

Haumer, P., Pohl, K. and Weidenhaupt, K. Requirements Elicitation and Validation
with Real World Scenes. IEEE Transactions on Software Engineering, Vol. 24, No.
12, Special Issue on Scenario Management, December 1998.

Heitmeyer, C. L., Jeffords, R. D. and Labaw, B. G. Automated Consistency Checking of
Requirements Specifications. IEEE Transactions on Software Engineering and
Methodology, vol. 5, no 3, pp. 231-261, 1996.

Hermosillo Worley, J., Rakoto, H., Grabot, B. and Geneste, L. A competence approach
in the experience feedback process, in "Integrating Human Aspects in Production
Management", Series: IFIP International Federation for Information Processing, Vol.
160, Zulch, Gert; Jagdev, Harinder S.; Stock, Patricia (Eds.) 2005, Kluwer Academic
Press.

Gramlich, B. Strategic Issues, Problems and Challenges in Inductive Theorem Proving.
Electronic Notes in Theoretical Computer Science, Volume 125, Issue 2, 15 March
2005, Pages 5-43.

INCOSE SE Handbook Working Group, System Engineering Handbook, A « How To »
Guide For All Engineers, July 2004.

INTEROP. Interoperability research for networked enterprises applications and
software, network of excellence, proposal part B, April 23 2003.

Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall, 1985.

Requirements Verification with Graph Operations

ISO 10314. ‘Reference Model for Shop Floor Production Standards’, Technical report
10314, Part 1, ISO TC 184/SC5/WG1 N126 and Part 2, ISO TC 184/SC5/WG1
N160. 1990.

Jackson, M. Problems, Methods and Specialisation. Software Engineering Journal,
Volume 9, Number 6, pages 249-255, November 1994; edited and abridged in IEEE
Software ,Volume 11, Number 6, pages 57-62, November 1994.

Jackson, D. Lightweight Formal Methods. Proceedings of International Symposium of
Formal Methods Europe, Berlin, Germany, March 12-16, 2001.

Kamsu Foguem, B. Complex Systems Properties Modelling and Verification:
Application to Enterprise Process Analysis (in French). PhD thesis, University of
Montpellier II, July 2004.

Kamsu Foguem, B., Chapurlat,V. and Prunet, F. Enterprise Model Verification : a
Graph-based Approach. Symposium on Discrete Events in Industrial and
Manufacturing Systems; CESA’03, IEEE/SMC multiconference on Computational
Engineering in Systems Applications. Lille, France, July 2003.

Kosanke, K., Jochem, R., Nell, J.G. and Ortiz Bas, A. Enterprise Inter- and Intra-
organisational Integration - Building an International Consensus, Kluwer Academic
Publishers, 2003, ISBN 1-4020-7277-5.

Lamport, L. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, SE-3(2):125-143, March 1977.

Maiden, N.A.M. and Hare, M. Problem domain categories in requirements engineering.
International Journal of Human-Computer Studies. 49(3): 281-304, September 1998.

Manna, Z. and Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

Martin J. N., System Engineering Handbook, CRC press, 1997.

Molina, A., Panetto, H., Chen, D., Vernadat, F. and Whitman, L. Enterprise Integration
and networking: Milestone Report, TC 5.3 Enterprise Integration and Networking,
Proceedings of ICEIMT2004, International Conference on Enterprise Integration
and Modeling Technology, Canada, 2004.

Monin, J-F. Understanding Formal Methods. Springer-Verlag, January 2003.

Morel G., Pétin J. F., Lamboley P. Formal specification for manufacturing systems
automation; 10th IFAC/INCOM Symposium, Vienna, Austria, 2001.

Morel G., Panetto H., Zaremba M. and Mayer, F. Manufacturing Enterprise Control and
Management System Engineering: paradigms and open issues. IFAC Annual Review
in Control, Volume 27, Issue 2, 2003, Pages 199-209.

NAS (National Airspace System). NAS System Engineering Manual Version 3.0.
Published in September 2004. Document is available to
http://www.faa.gov/asd/SystemEngineering/

Paige, R.F. Heterogeneous Notations for Pure Formal Method Integration. Formal
Aspects of Computing 10(3): 233-242, Springer-Verlag, June 1998.

Petit, M. and Doumeingts, G., Enterprise modelling state of the art, Deliverable D1.1 of
the UEML Project, IST-2001-34229, November 2002. Document available at UEML
portal: http://www.ueml.org.

Potts, C. Fitness for use : the system quality that matters most. Proceedings of the Third
International Workshop on Requirements Engineering: Foundations of Software
Quality REFSQ’97, Barcelona, pp. 15-28, June 1997.

B. Kamsu Foguem� and V. Chapurlat

 Ueda, K. Synthesis and Emergence - research overview. Artificial Intelligence in
Engineering, 15, pp 321-327, published by Elsevier Science Ltd, 2001.

Robertson S. and Robertson J. Mastering the requirements process. Addison-Wesley,
1999.

Rolland C., Ben Achour C., Cauvet C., Ralyté J., Sutcliffe A., Maiden N.A.M., Jarke
M., Haumer P., Pohl K., Dubois E. and Heymans P., "A Proposal for a Scenario
Classification Framework". Requirements Engineering Journal, Vol; 3, No. 1, pp. 23-
47, 1998.

Rolland C., and Prakash N. From Conceptual Modelling to Requirements Engineering.
Special Issue of Annals of Software Engineering on "Comparative Studies of
Engineering Approaches for Software Engineering", 10,pp.151-176, 2000.

Roussel J. M., Faure J. M., Lesage J. J. and Medina A. An algebraic approach for
dependable logic control systems design. International Journal of Production
Research; vol. 42, n° 14, pp: 2859-2876, July 2004.

Shiu, S. and Sankar, K.P. Foundations of Soft Case-Based Reasoning. Wiley Series on
Intelligent Systems. 274 pages, Publisher: Wiley-Interscience (March 5, 2004),
ISBN: 0471086355.

Sowa, J.F. Conceptual structures: information processing in mind and machine. New
York (U.S.A.): Addison-Wesley, 1984.

Sowa, J.F. and Zachman, J.A.., Extending and Formalising the Framework for
Information Systems Architecture, IBM Systems Journal, volume 31, numéro 3,
pages 590 - 616, 1992.

Sowa, J.F. Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

Spivey, JM. The Z Notation: A Reference Manual (2nd Edition). Prentice Hall, 1992.

Sutcliffe, A. User-Centred Requirements Engineering: Theory and Practice. Springer,
ISBN: 1852335173, 2002.

Van Lamsweerde, A., Darimont, R. & Letier, E. Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering, 24(11): 908-
926, 1998.

Vernadat, F. B., Enterprise Modeling and Integration: Principles and Applications,
(London: Chapman & Hall), 1996.

Vernadat, F.B. UEML: towards a unified enterprise modelling language. International
Journal of Production Research, Volume 40, Number 17, Pages: 4309 – 4321 /
November 20, 2002.

Vilhelm, C., Ravaux, P., Calvelo, D., Jaborska, A., Chambrin, M-C., and Boniface, M.
Think!: a unified numerical-symbolic knowledge representation scheme and
reasoning system. Artificial Intelligence, Vol. 116, no. 1-2, pp. 67 - 85, January
2000.

Völker, N. and Krämer, B.J. Automated verification of function block-based industrial
control systems. Science of Computer Programming, Volume 42, Issue 1, January
2002, Pages 101-113.

Watson, I. Applying Case-Based Reasoning: Techniques for Enterprise Systems.
Morgan Kaufmann: San Mateo, CA, US, 1997.

Young, R. The Requirements Engineering Handbook. Artech House Publishers, ISBN
1580532667, 2004.

