17 research outputs found

    The Iceland Microcontinent and a continental Greenland-Iceland-Faroe Ridge

    Get PDF
    The breakup of Laurasia to form the Northeast Atlantic Realm was the culmination of a long period of tectonic unrest extending back to the Late Palaeozoic. Breakup was prolonged and complex and disintegrated an inhomogeneous collage of cratons sutured by cross-cutting orogens. Volcanic rifted margins formed, which are blanketed by lavas and underlain variously by magma-inflated, extended continental crust and mafic high-velocity lower crust of ambiguous and probably partly continental provenance. New rifts formed by diachronous propagation along old zones of weakness. North of the Greenland-Iceland-Faroe Ridge the newly forming rift propagated south along the Caledonian suture. South of the Greenland-Iceland-Faroe Ridge it propagated north through the North Atlantic Craton along an axis displaced ~ 150 km to the west of the northern rift. Both propagators stalled where the confluence of the Nagssugtoqidian and Caledonian orogens formed a transverse barrier. Thereafter, the ~ 400-km-wide latitudinal zone between the stalled rift tips extended in a distributed, unstable manner along multiple axes of extension that frequently migrated or jumped laterally with shearing occurring between them in diffuse transfer zones. This style of deformation continues to the present day. It is the surface expression of underlying magma-assisted stretching of ductile mid- and lower continental crust which comprises the Icelandic-type lower crust that underlies the Greenland-Iceland-Faroe Ridge. This, and probably also one or more full-crustal-thickness microcontinents incorporated in the Ridge, are capped by surface lavas. The Greenland-Iceland-Faroe Ridge thus has a similar structure to some zones of seaward-dipping reflectors. The contemporaneous melt layer corresponds to the 3–10 km thick Icelandic-type upper crust plus magma emplaced in the ~ 10–30-km-thick Icelandic-type lower crust. This model can account for seismic and gravity data that are inconsistent with a gabbroic composition for Icelandic-type lower crust, and petrological data that show no reasonable temperature or source composition could generate the full ~ 40-km thickness of Icelandic-type crust observed. Numerical modeling confirms that extension of the continental crust can continue for many tens of Myr by lower-crustal flow from beneath the adjacent continents. Petrological estimates of the maximum potential temperature of the source of Icelandic lavas are up to 1450 °C, no more than ~ 100 °C hotter than MORB source. The geochemistry is compatible with a source comprising hydrous peridotite/pyroxenite with a component of continental mid- and lower crust. The fusible petrology, high source volatile contents, and frequent formation of new rifts can account for the true ~ 15–20 km melt thickness at the moderate temperatures observed. A continuous swathe of magma-inflated continental material beneath the 1200-km-wide Greenland-Iceland-Faroe Ridge implies that full continental breakup has not yet occurred at this latitude. Ongoing tectonic instability on the Ridge is manifest in long-term tectonic disequilibrium on the adjacent rifted margins and on the Reykjanes Ridge, where southerly migrating propagators that initiate at Iceland are associated with diachronous swathes of unusually thick oceanic crust. Magmatic volumes in the NE Atlantic Realm have likely been overestimated and the concept of a monogenetic North Atlantic Igneous Province needs to be reappraised. A model of complex, piecemeal breakup controlled by pre-existing structures that produces anomalous volcanism at barriers to rift propagation and distributes continental material in the growing oceans fits other oceanic regions including the Davis Strait and the South Atlantic and West Indian oceans

    D3.3 – First Social Gamification Assets

    Get PDF
    This deliverable is software, as such this document is abridged to be as succinct as possible, the extended descriptions and detailed documentation for the software are online. The document consists of two parts, part one describes the first bundle of social gamification assets developed in WP3, part two presents mock-ups of the RAGE ecosystem gamification. In addition to the software outline, included in part one is a short market analysis of existing gamification solutions, outline rationale for combining the three social gamification assets into one unified asset, and the branding exercise to make the assets more developer friendly.Online links to the source code, binaries, demo and documentation for the assets are provided. The combined assets offer game developers as well as a wide range of software developers the opportunity to readily enhance existing games or digital platforms with multiplayer gamification functionalities, catering for both competitive and cooperative game dynamics. The solution consist of a flexible client-server solution which can run either as a cloud-based service, serving many games or have specific instances for individual games as necessary.This study is part of the RAGE project. The RAGE project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644187. This publication reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains

    D4.4 - Final Version of Game Applications for Scenario Pilots

    No full text
    This final report provides an overview of the final versions of the RAGE games made using the RAGE assets after the first round of pilot testing and formative evaluation. The document serves as internal communication and discussion in RAGE among game companies and asset developers together with case owners and evaluators. The document is structured as follows: each game is contained in its own section, which is then divided into a section covering a short overview, a section on changes since initial version (presented in D4.3), a section on the use of RAGE components and a section providing actual game screenshots from the latest version of the game, together with narrated description

    D4.3 – Initial version of game applications for scenario pilots

    Get PDF
    This intermediate report provides an overview of the current versions of the RAGE games made using the RAGE assets for the first round of pilot testing and formative evaluation. The document serves as internal communication and discussion in RAGE among game companies and asset developers together with case owners and evaluators. Whilst detailed description of the design of the games, together with their learning outcomes and piloting can be found in D4.2 and D5.1, updates and changes to the designs, game flow and use of assets are included here.This study is part of the RAGE project. The RAGE project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644187. This publication reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains
    corecore