751 research outputs found
Meteor research program
An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned
Combined observations of meteors by image-orthicon television camera and multi-station radar
Observations from multiple sites of a radar network and by television of 29 individual meteors from February 1969 through June 1970 are reported. Only 12 of the meteors did not appear to fragment over all the observed portion of their trajectories. From these 12, the relation for the radar magnitude to the panchromatic absolute magnitude was found in terms of velocity of the meteor. A very tentative fit to the data on the duration of long enduring echoes versus visual absolute magnitude is made. The exponential decay characteristics of the later parts of several of the light curves are pointed out as possible evidence of mutual coalescence of droplets into which the meteoroid has completely broken
Low-Energy Nondipole Effects in Molecular Nitrogen Valence-Shell Photoionization
Observations are reported for the first time of significant nondipole effects in the photoionization of the outer-valence orbitals of diatomic molecules. Measured nondipole angular-distribution parameters for the 3sigmag, 1piu, and 2sigmau shells of N2 exhibit spectral variations with incident photon energies from thresholds to ~200 eV which are attributed via concomitant calculations to particular final-state symmetry waves arising from (E1)[direct-product](M1,E2) radiation-matter interactions first-order in photon momentum. Comparisons with previously reported K-edge studies in N2 verify linear scaling with photon momentum, accounting in part for the significantly enhanced nondipole behavior observed in inner-shell ionization at correspondingly higher momentum values in this molecule
Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18
We present new lightcurves of the massive hot Jupiter system WASP-18 obtained
with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5
micron. These lightcurves are used to measure the amplitude, shape and phase of
the thermal phase effect for WASP-18b. We find that our results for the thermal
phase effect are limited to an accuracy of about 0.01% by systematic noise
sources of unknown origin. At this level of accuracy we find that the thermal
phase effect has a peak-to-peak amplitude approximately equal to the secondary
eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at
the same phase as mid-occultation to within about 5 degrees at 3.6 micron and
to within about 10 degrees at 4.5 micron. The shape and amplitude of the
thermal phase curve imply very low levels of heat redistribution within the
atmosphere of the planet. We also perform a separate analysis to determine the
system geometry by fitting a lightcurve model to the data covering the
occultation and the transit. The secondary eclipse depths we measure at 3.6
micron and 4.5 micron are in good agreement with previous measurements and
imply a very low albedo for WASP-18b. The parameters of the system (masses,
radii, etc.) derived from our analysis are in also good agreement with those
from previous studies, but with improved precision. We use new high-resolution
imaging and published limits on the rate of change of the mean radial velocity
to check for the presence of any faint companion stars that may affect our
results. We find that there is unlikely to be any significant contribution to
the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find
that there is no evidence for variations in the times of eclipse from a linear
ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA
Electronic Footprints in the Sand: Technologies for Assisting Domestic Violence Survivors
With the rapid growth and spread of Internet-based social support systems, the impact that these systems can make to society – be it good or bad – has become more significant and can make a real difference to people’s lives. As such, various aspects of these systems need to be carefully investigated and analysed, including their security/privacy issues. In this paper, we present our work in designing and implementing various technological features that can be used to assist domestic violence survivors in obtaining help without leaving traces which might lead to further violence from their abuser. This case study serves as the core of our paper, in which we outline our approach, various de- sign considerations – including difficulties in keeping browsing history private, our currently implemented solutions (single use URL, targeted history sanitita- tion agent, and secret graphical gateway), as well as novel ideas for future work (including location-based service advertising and deployment in the wild)
Four-colour photometry of eclipsing binaries. XL, uvby light curves for the B-type systems DW Carinae, BF Centauri, AC Velorum, and NSV 5783
Aims. In order to increase the limited number of B-stars with accurately known dimensions, and also the number of well studied eclipsing binaries in open clusters, we have undertaken observations and studies of four southern double-lined eclipsing B-type binaries; DWCar, BF Cen, ACVel, and NSV 5783.
Methods. Complete uvby light curves were observed between January 1982 and April 1991 at the Danish 0.5 m telescope at ESO La Silla, since 1985 known as the Strömgren Automatic Telescope (SAT). Standard indices for the systems and the comparison stars,as well as additional minima observations for ACVel, have been obtained later at SAT. For DWCar and ACVel, high-resolution spectra for definitive spectroscopic orbits have also been obtained; they are presented as part of the detailed analyses of these systems.
A few spectra of NSV 5783 are included in the present paper.
Results. For all four systems, the first modern accurate light curves have been established. DWCar is a detached system consisting of two nearly identical components. It is member of the young open cluster Cr228. A detailed analysis, based on the new light curves and 29 high-resolution spectra, is published separately. BFCen is semidetached and is member of NGC 3766. Modern spectra are
needed for a detailed study. ACVel is a detached system with at least one more star. A full analysis, based on the new light curves and 18 high-resolution spectra, is published separately. NSV 5783 is discovered to be an eclipsing binary consisting of two well-detached
components in an 11-day period eccentric (e = 0.18) orbit. Secondary eclipse is practically total. From the light curves and a few high-resolution spectra, accurate photometric elements and preliminary absolute dimensions have been determined. The quite similar components have masses of about 5 M and radii of about 3.5 R, and they seem to have evolved just slightly off the ZAMS. The
measured rotational velocities (≈150 km s−1) are about 6 times those corresponding to pseudosynchronization
Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot
We present a detailed study of the F-type detached eclipsing binary BK Peg,
based on new photometric and spectroscopic observations. The two components,
which have evolved to the upper half of the main-sequence band, are quite
different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun)
and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day
period orbit of BK Peg is slightly eccentric (e = 0.053). The measured
rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary)
km/s. For the secondary component this corresponds to (pseudo)synchronous
rotation, whereas the primary component seems to rotate at a slightly lower
rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar
abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina
evolutionary models for the observed metal abundance reproduce BK Peg at ages
of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the
more massive primary component than for the secondary. We find the same age
trend for three other upper main-sequence systems in a sample of well studied
eclipsing binaries with components in the 1.15-1.70 Msun range, where
convective core overshoot is gradually ramped up in the models. We also find
that the Yonsei-Yale models systematically predict higher ages than the
Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have
determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We
propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing
binaries to fine-tune convective core overshoot, diffusion, and possibly other
ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic
Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy
We report the discovery of low-amplitude gravity-mode oscillations in the
massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space
photometry and 5 months of high-resolution high signal-to-noise spectroscopy.
The new data are of unprecedented quality and allowed to improve the orbital
and fundamental parameters for this binary. The orbital solution was subtracted
from the photometric data and led to the detection of periodic intrinsic
variability with frequencies of which some are multiples of the orbital
frequency and others are not. Spectral disentangling allowed the detection of
line-profile variability in the primary. With our discovery of intrinsic
variability interpreted as gravity mode oscillations, V380 Cyg becomes an
important laboratory for future seismic tuning of the near-core physics in
massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS
Letter
Variable emission from a gaseous disc around a metal-polluted white dwarf
We present the discovery of strongly variable emission lines from a gaseous disc around the DA white dwarf SDSS J1617+1620, a star previously found to have an infrared excess indicative of a dusty debris disc formed by the tidal disruption of a rocky planetary body. Time series spectroscopy obtained during the period 2006–2014 has shown the appearance of strong double-peaked Ca II emission lines in 2008. The lines were weak, at best, during earlier observations, and monotonically faded through the remainder of our monitoring. Our observations represent unambiguous evidence for short-term variability in the debris environment of evolved planetary systems. Possible explanations for this extraordinary variability include the impact on to the dusty disc of either a single small rocky planetesimal, or of material from a highly eccentric debris tail. The increase in flux from the emission lines is sufficient that similar events could be detected in the broad-band photometry of ongoing and future large-area time domain surveys
WASP-43b: The closest-orbiting hot Jupiter
We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star
every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting
a hot Jupiter. It also shows a 15.6-d rotation period. The planet has a mass of
1.8 Mjup, a radius of 0.9 Rjup, and with a semi-major axis of only 0.014 AU has
the smallest orbital distance of any known hot Jupiter. The discovery of such a
planet around a K7V star shows that planets with apparently short remaining
lifetimes owing to tidal decay of the orbit are also found around stars with
deep convection zones.Comment: 4 page
- …