34 research outputs found

    Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrification

    Get PDF
    Isolated liver cells (primarily isolated hepatocytes) have found important applications in science and medicine over the past 40 years in a wide range of areas, including physiological studies, investigations on liver metabolism, organ preservation and drug de-toxification, experimental and clinical transplantation. An integral component of many of these works is the need to store the isolated cells, either for short or long-term periods. This review covers the biopreservation of liver cells, with a focus on the history of liver cell biopreservation, the application of hypothermia for short-term storage, standard cryopreservation methods for isolated hepatocytes, the biopreservation of other types of liver cells, and recent developments such as vitrification of hepatocytes. By understanding the basis for the different approaches, it will be possible to select the best options for liver cell biopreservation in different applications, and identify ways to improve preservation protocols for the future.Fil: Fuller, Barry J.. University College London; Estados UnidosFil: Petrenko, Alexander Y.. Ukraine Academy of Sciences; UcraniaFil: Rodriguez, Joaquin Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Secretaria de Ciencia y Técnica. Centro Binacional de Investigación en Criobiología Clínica y Aplicada; ArgentinaFil: Somov, Alexander Y.. Ukraine Academy of Sciences; UcraniaFil: Balaban, Cecilia Lucía. Universidad Nacional de Rosario. Secretaria de Ciencia y Técnica. Centro Binacional de Investigación en Criobiología Clínica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Guibert, Edgardo Elvio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Secretaria de Ciencia y Técnica. Centro Binacional de Investigación en Criobiología Clínica y Aplicada; Argentin

    Conceptual Design of Beryllium Target for the KLF Project

    Get PDF
    The Kaon Production Target (KPT) is an important component of the proposed K-Long facility which will be operated in JLab Hall~D, targeting strange baryon and meson spectroscopy. In this note we present a conceptual design for the Be-target assembly for the planned K-Long beam line, which will be used along with the GlueX spectrometer in its standard configuration for the proposed experiments. The high quality 12-GeV CEBAF electron beam enables production of a KL_L flux at the GlueX target on the order of 1×104KL/sec1\times 10^4 K_L/sec, which exceeds the KL_L flux previously attained at SLAC by three orders of magnitude. An intense KL_L beam would open a new window of opportunity not only to locate "missing resonances" in the strange hadron spectrum, but also to establish their properties by studying different decay channels systematically. The most important and radiation damaging background in KL_L production is due to neutrons. The Monte Carlo simulations for the proposed conceptual design of KPT show that the resulting neutron and gamma flux lead to a prompt radiation dose rate for the KLF experiment that is below the JLab Radiation Control Department radiation dose rate limits in the experimental hall and at the site boundary, and will not substantially affect the performance of the spectrometer.Comment: 9 pages, 9 figure

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Drone-Aided Detection of Weeds: Transfer Learning for Embedded Image Processing

    No full text
    In this article, we address the problem of hogweed detection using a drone equipped with red, green, blue (RGB) and multispectral cameras. We study two approaches: 1) offline detection running on the orthophoto of the area scanned within the mission and 2) real-time scanning from the frame stream directly on the edge device performing the flight mission. We show that by fusing the information from an additional multispectral camera installed on the drone, there is an opportunity to boost the detection quality, which can then be preserved even with a single RGB camera setup by the introduction of an additional convolution neural network trained with transfer learning to produce the fake multispectral images directly from the RGB stream. We show that this approach helps either eliminate the multispectral hardware from the drone or, if only the RGB camera is at hand, boost the segmentation performance by the cost of slight increase in computational budget. To support this claim, we have performed an extensive study of network performance in simulations of both the real-time and offline modes, where we achieve at least 1.1% increase in terms of the mean intersection over union metric when evaluated on the RGB stream from the camera and 1.4% when evaluated on orthophoto data. Our results show that the proper optimization guarantees a complete elimination of the multispectral camera from the flight mission by adding a preprocessing stage to the segmentation network without the loss of quality

    Decomposition of the Knapsack Problem for Increasing the Capacity of Operating Rooms

    No full text
    This paper is aimed at the problem of scheduling surgeries in operating rooms. To solve this problem, we suggest using some variation of the bin packing problem. The model is based on the actual operation of 10 operating rooms, each of which belongs to a specific department of the hospital. Departments are unevenly loaded, so operations can be moved to operating rooms in other departments. The main goal is to increase patient throughput. It is also necessary to measure how many operations take place in other departments with the proposed solution. The preferred solution is a solution with fewer such operations, all other things being equal. Due to the fact that the mixed-integer linear programming model turned out to be computationally complex, two approximation algorithms were also proposed. They are based on decomposition. The complexity of the proposed algorithms is estimated, and arguments are made regarding their accuracy from a theoretical point of view. To assess the practical accuracy of the algorithms, the Gurobi solver is used. Experiments were conducted on real historical data on surgeries obtained from the Burdenko Neurosurgical Center. Two decomposition algorithms were constructed and a comparative analysis was performed for 10 operating rooms based on real data

    RF Powered Gas Wireless Sensor Node for Smart Applications

    No full text
    Wireless Sensor Network (WSN) paradigm has been applied to a high number of monitoring and control applications. However, the constraint of WSN energy resources imposes restrictions on its truly ubiquitous and long-term deployments. We address the problem of autonomous long-term operation of a gas wireless sensor by employing the far-field RF energy harvesting technology at 900 MHz in the power range from −20 dBm to 10 dBm. The node takes regular CH4 or CO measurements and communicates the data to a wireless network coordinator at 2.4 GHz. Experimental results demonstrate that the optimized energy consumption of WSN, as well as energy harvesting of at least 1 mW (0 dBm) of ambient RF signal, ensure the ‘perpetual’ operation of WSN
    corecore