950 research outputs found

    Education among Jewish Displaced Persons: The Sheerit Hapletah in Germany, 1945-1950

    Get PDF
    This dissertation deals with the problems of education among the Jewish Displaced Persons (known among Jews as Sheerit Hapletah (Saved Remnant) in Germany following the end of World War II in 1945

    The lung in progressive systemic sclerosis (scleroderma)

    Get PDF
    Click on the link to view

    Prediction of HLA genotypes from single-cell transcriptome data

    Get PDF
    The human leukocyte antigen (HLA) locus plays a central role in adaptive immune function and has significant clinical implications for tissue transplant compatibility and allelic disease associations. Studies using bulk-cell RNA sequencing have demonstrated that HLA transcription may be regulated in an allele-specific manner and single-cell RNA sequencing (scRNA-seq) has the potential to better characterize these expression patterns. However, quantification of allele-specific expression (ASE) for HLA loci requires sample-specific reference genotyping due to extensive polymorphism. While genotype prediction from bulk RNA sequencing is well described, the feasibility of predicting HLA genotypes directly from single-cell data is unknown. Here we evaluate and expand upon several computational HLA genotyping tools by comparing predictions from human single-cell data to gold-standard, molecular genotyping. The highest 2-field accuracy averaged across all loci was 76% by arcasHLA and increased to 86% using a composite model of multiple genotyping tools. We also developed a highly accurate model (AUC 0.93) for predicting HLA-DRB345 copy number in order to improve genotyping accuracy of the HLA-DRB locus. Genotyping accuracy improved with read depth and was reproducible at repeat sampling. Using a metanalytic approach, we also show that HLA genotypes from PHLAT and OptiType can generate ASE ratios that are highly correlated (R2 = 0.8 and 0.94, respectively) with those derived from gold-standard genotyping

    New strings for old Veneziano amplitudes II. Group-theoretic treatment

    Full text link
    In this part of our four parts work (e.g see Part I, hep-th/0410242) we use the theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function can be recovered with help of the finite dimensional exactly solvable N=2 supersymmetric quantum mechanical model known earlier from works by Witten, Stone and others. Using the Lefschetz isomorphisms theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in early fifties and sixties and documented in the monograph by Bourbaki. Based on these theorems we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.Comment: 57 pages J.Geom.Phys.(in press, available on line

    Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta.</p> <p>Methods</p> <p>Daily measures of twelve ambient air pollutants were analyzed: NO<sub>2</sub>, NO<sub>x</sub>, O<sub>3</sub>, SO<sub>2</sub>, CO, PM<sub>10 </sub>mass, PM<sub>2.5 </sub>mass, and PM<sub>2.5 </sub>components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits.</p> <p>Results</p> <p>Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed.</p> <p>Conclusions</p> <p>For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.</p

    Self-directedness, integration and higher cognition

    Get PDF
    In this paper I discuss connections between self-directedness, integration and higher cognition. I present a model of self-directedness as a basis for approaching higher cognition from a situated cognition perspective. According to this model increases in sensorimotor complexity create pressure for integrative higher order control and learning processes for acquiring information about the context in which action occurs. This generates complex articulated abstractive information processing, which forms the major basis for higher cognition. I present evidence that indicates that the same integrative characteristics found in lower cognitive process such as motor adaptation are present in a range of higher cognitive process, including conceptual learning. This account helps explain situated cognition phenomena in humans because the integrative processes by which the brain adapts to control interaction are relatively agnostic concerning the source of the structure participating in the process. Thus, from the perspective of the motor control system using a tool is not fundamentally different to simply controlling an arm

    BIOSIGNATURE GASES IN Hā‚‚-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Get PDF
    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H2 atmospheres. In atmospheres with high CO2 levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H2 atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH3Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH3 and N2O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH4 and H2S, are not effective signs of life in an H2-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H2-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission spectra with the James Webb Space Telescope

    Randomised Controlled Trials Assessing the Clinical Value of Urodynamic Studies: A Systematic Review and Meta-analysis

    Get PDF
    Context: The role of urodynamic studies (UDSs) in the diagnosis of lower urinary tract symptoms (LUTS) is crucial. Although expert statements and guidelines underline their value for clinical decision-making in various clinical settings, the academic debate as to their impact on patient outcomes continues. Objective: To summarise the evidence from all randomised controlled trials assessing the clinical usefulness of UDS in the management of LUTS. Evidence acquisition: For this systematic review, searches were performed without language restrictions in three electronic databases until November 18, 2020. The inclusion criteria were randomised controlled study design and allocation to receive UDS or not prior to any clinical management. Quality assessment was performed by two reviewers independently, using the Cochrane Collaboration's tool for assessing the risk of bias. A random-effect meta-analysis was performed on the uniformly reported outcome parameters. Evidence synthesis: Eight trials were included, and all but two focused on women with pure or predominant stress urinary incontinence (SUI). A meta-analysis of six studies including 942 female patients was possible for treatment success, as defined by the authors (relative risk 1.00, 95% confidence interval: 0.93ā€“1.07), indicating no difference in efficacy when managing women with UDS. Conclusions: Although UDSs are not replaceable in diagnostics, since there is no other equivalent method to find out exactly what the lower urinary tract problem is, there are little data supporting its impact on outcomes. Randomised controlled trials have focussed on a small group of women with uncomplicated SUI and showed no added value, but these findings cannot be extrapolated to the overall patient population with LUTS, warranting further well-designed trials. Patient summary: Despite urodynamics being the gold standard to assess lower urinary tract symptoms (LUTS), as it is the only method that can specify lower urinary tract dysfunction, more studies assessing the clinical usefulness of urodynamic studies (UDSs) in the management of LUTS are needed. UDS investigation is not increasing the probability of success in the treatment of stress urinary incontinence
    • ā€¦
    corecore