7 research outputs found

    Unsupervised Machine Learning Approaches to Nuclear Particle Type Classification

    Get PDF
    Historically, nuclear science and radiation detection fields of research used Pulse Shape Discrimination (PSD) to label gamma-ray and neutron interactions. However, PSD’s effectiveness relies greatly on the existence of distinguishable differences in an interaction’s measured pulse shape. In the fields of machine learning and data analytics, clustering algorithms provide ways to group samples with similar features without the need for labels. Clustering gamma-ray and neutron interactions may mitigate PSD’s pitfalls, since clustering methods view the total waveform rather than just the area under the tail and the total area under the pulse. However, traditional clustering methods, such as the k-means clustering algorithm, suffer from poor performance on high dimensional data. This study explores unsupervised machine learning methods using Deep Neural Networks (DNN) to cluster gamma-ray and neutron interaction measurements collected with an organic scintillation detector, in order to perform binary labeling of gamma-rays and neutrons. Using various network architectures, this research demonstrates the effectiveness of using autoencoder-based neural networks to cluster gamma-ray and neutron interactions when compared to shallow clustering algorithms. The results reveal the effectiveness of autoencoders on high energy gamma-ray and neutron pulses with an energy deposit greater than 0.80 MeVee whilst greatly outperforming k-means comparatively in all cases

    New strings for old Veneziano amplitudes II. Group-theoretic treatment

    Full text link
    In this part of our four parts work (e.g see Part I, hep-th/0410242) we use the theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function can be recovered with help of the finite dimensional exactly solvable N=2 supersymmetric quantum mechanical model known earlier from works by Witten, Stone and others. Using the Lefschetz isomorphisms theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in early fifties and sixties and documented in the monograph by Bourbaki. Based on these theorems we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.Comment: 57 pages J.Geom.Phys.(in press, available on line

    Water Pollution in Oregon

    Get PDF
    2 p. Review produced for HC 441: Science Colloquium: Willamette River Environmental Health, Robert D. Clark Honors College, University of Oregon, Spring term, 2004
    corecore