722 research outputs found

    Longitudinal familial analysis of blood pressure involving parametric (co)variance functions

    Get PDF
    BACKGROUND: For analyzing longitudinal familial data we adopted a log-linear form to incorporate heterogeneity in genetic variance components over the time, and additionally a serial correlation term in the genetic effects at different levels of ages. Due to the availability of multiple measures on the same individual, we permitted environmental correlations that may change across time. RESULTS: Systolic blood pressure from family members from the first and second cohort was used in the current analysis. Measures of subjects receiving hypertension treatment were set as censored values and they were corrected. An initial check of the variance and covariance functions proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that the observed trait dispersion pattern follows the assumptions adopted. CONCLUSION: The corrections for censored phenotypes based on ordinary linear models may be an appropriate simple model to correct the data, ensuring that the original variability in the data was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance model adopted

    Strategy and model building in the fourth dimension: a null model for genotype × age interaction as a Gaussian stationary stochastic process

    Get PDF
    BACKGROUND: Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype × age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. RESULTS: We found evidence for genotype × age interaction for fasting glucose and systolic blood pressure. CONCLUSIONS: There is polygenic genotype × age interaction for fasting glucose and systolic blood pressure and quantitative trait locus × age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM

    Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

    Get PDF
    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.Acknowledgements: This work was supported by the European Commission’s 7th Framework Programme (project Metaexplore 222625), the National Scientific and Technical Research Council of Argentina (Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Argentina) and Ministry of Science Technology and Productive Innovation (Ministerio de Ciencia Tecnolología e Innovación Productiva—MinCyT, Argentina), projects PICT2013-0113, PICT2012-518 and PICT 2012-1719). MCM, FJA were supported by fellowships from CONICET. MFDP, MP, ML, GTT and AL are researchers at CONICET. The bioinformatics support of the BMBF-funded project (grant 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged. Work in FdlC group was supported by grant “Plasmid Offensive” BFU2014-55534-C2-1-P from Ministerio de Economía y Competitividad (MINECO, Spain), and Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015/0019) from Instituto de Salud Carlos III (Spain)-co-financed by European Development Regional Fund. The authors are grateful to Paula Giménez and Silvana Tongiani for excellent technical assistance

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge

    Full text link
    A novel actinomycete, designated PA3T, was isolated from an oil refinery wastewater treatment plant, located in Palos de la frontera, Huelva, Spain, and characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a distinct subclade in the Pseudonocardia tree together with Pseudonocardia asaccharolytica DSM 44247T. The chemotaxonomic properties of the isolate, for example, the presence of MK-8 (H4) as the predominant menaquinone and iso-C16:0 as the major fatty acid are consistent with its classification in the genus Pseudonocardia. DNA:DNA pairing experiments between the isolate and the type strain of P. asaccharolytica DSM 44247T showed that they belonged to separate genomic species. The two strains were readily distinguished using a combination of phenotypic properties. Consequently, it is proposed that isolate PA3T represents a novel species for which the name Pseudonocardia hispaniensis sp. nov. is proposed. The type strain is PA3T (= CCM 8391T = CECT 8030T).Cuesta Amat, G.; Soler Hernández, A.; Alonso Molina, JL.; Ruvira, M.; Lucena, T.; Arahal, D.; Goodfellow, M. (2013). Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek. 103(1):135-142. doi:10.1007/s10482-012-9792-1S1351421031Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Epsar-Generalitat Valenciana, España, p 21–36Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) Pseudonocardia mongoliensis sp. nov. and Pseudonocardia khuvsgulensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:747–756Arahal DR, Sánchez E, Macián MC, Garay E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family ‘‘Leuconostocaceae’’. Int Microbiol 11:33–39Auffret M, Labbé D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466Chen HH, Qin S, Li J, Zhang YQ, Xu LH, Jiang CL, Kim CJ, Li WJ (2009) Pseudonocardia endophytica sp. nov., isolated from pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 59:559–563De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y (2009) Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 59:1487–1491Gordon RE, Barnett DA, Handerhan JE, Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63Hamid ME, Minnikin DE, Goodfellow M, Ridell M (1993) Thin-layer chromatographic analysis of glycolipids and mycolic acids from Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. Zbl Bakt 279:354–367Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322Henssen A (1957) Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch Mikrobiol 26:373–414Huang,Y, Goodfellow M (2012) Genus Pseudonocardia Hennsen 1957, 408VP emend. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Suzuki KE, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 5, part B. Springer, New YorkHuang Y, Wang L, Lu Z, Hong L, Liu Z, Tan GYA, Goodfellow M (2002) Proposal to combine the genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of Pseudonocardia zijingensis sp. nov. Int J Syst Evol Microbiol 52:977–982Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Kaewkla O, Franco CMM (2010) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 60:2818–2822Kaewkla O, Franco CMM (2011) Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 61:742–746Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR (2006) Pseudonocardia tetrahydrofuranoxydans sp. nov. Int J Syst Evol Microbiol 56:1535–1538Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ (2011) Reassessment of the systematics of the suborder Pseudonocardineae: transfer of genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 61:1259–1264Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443Lechevalier MP, Stern AER, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes. Zbl Bakt Suppl 11:111–116Li J, Zhao GZ, Huang HY, Zhu WY, Lee JC, Kim CJ, Xu LH, Zhang LX, Li WJ (2010) Pseudonocardia rhizophila sp. nov., a novel actinomycete isolated from a rhizosphere soil. Antonie Van Leeuwenhoek 98:77–83Liu ZP, Wu JF, Liu ZH, Liu SJ (2006) Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 56:555–558Lucena T, Pascual J, Garay E, Arahal DR, Macián MC, Pujalte MJ (2010) Haliea mediterranea sp. nov., a new marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844–1848Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167MIDI (2008) Sherlock microbial identification system operating manual, version 6.1. MIDI Inc., NewarkMinnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241Nam S-W, Chun J, Kim S, Kim W, Zakrzewska-Czerwinska J, Goodfellow M (2003) Tsukamurella spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. Syst Appl Microbiol 26:367–375Okoh A, Ajisebutu S, Babalola G, Trejo-Hernandez MR (2001) Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil. Int Microbiol 4:83–87Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58:2475–2478Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196Qin S, Su YY, Zhang YQ, Wang HB, Jiang CL, Xu LH, Li WJ (2008) Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 58:2086–2089Qin S, Zhu WY, Jiang JH, Klenk HP, Li J, Zhao GZ, Xu LH, Li WJ (2010) Pseudonocardia tropica sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 60:2524–2528Qin S, Xing K, Fei SM, Lin Q, Chen XM, Li WJ, Jiang JH (2011) Pseudonocardia sichuanensis sp. nov., a novel endophytic actinomycete isolated from the root of Jatropha curcus L. Antonie Van Leeuwenhoek 99:395–401Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 28:695–701Reichert K, Lipski A, Pradella S, Stackebrandt E, Altendorf K (1998) Pseudonocardia asaccharolitica sp. nov. and Pseudonocardia sulfidoxidans sp. nov., two new dimethyl disulfide-degrading actinomycetes and emended description of the genus Pseudonocardia. Int J Syst Bacteriol 48:441–449Sakiyama Y, Thao NKN, Vinh HV, Giang NM, Miyadoh S, Hop DV, Ando K (2010) Pseudonocardia babensis sp. nov., isolated from plant litter. Int J Syst Evol Microbiol 60:2336–2340Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Tech Note 101:1–7Schäfer J, Busse HJ, Kämpfer P (2009) Pseudonocardia parietis sp. nov., from the indoor environment. Int J Syst Evol Microbiol 59:2449–2452Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of the actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94:21–33Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231Warwick S, Bowen T, McVeigh HP, Embley TM (1994) A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia. Int J Syst Bacteriol 44:293–299Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology report on the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299Zhao GZ, Li J, Zhu WY, Li XP, Tian SZ, Zhao LX, Xu LH, Li WJ (2011a) Pseudonocadia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisiae annua L. Antonie Van Leeuwenhoek 100:35–42Zhao GZ, Li J, Huang HY, Zhu WY, Zhao LX, Tang SK, Xu LH, Li WJ (2011b) Pseudonocardia artemisiae sp. nov., isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol 61:1061–1065Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ, Kim CJ, Xu LH, Li WJ (2011c) Pseudonocardia kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int J Syst Evol Microbiol 61:2292–229

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference
    corecore