723 research outputs found

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    Drinking behaviours and blood alcohol concentration in four European drinking environments: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reducing harm in drinking environments is a growing priority for European alcohol policy yet few studies have explored nightlife drinking behaviours. This study examines alcohol consumption and blood alcohol concentration (BAC) in drinking environments in four European cities.</p> <p>Methods</p> <p>A short questionnaire was implemented among 838 drinkers aged 16-35 in drinking environments in four European cities, in the Netherlands, Slovenia, Spain and the UK. Questions included self-reported alcohol use before interview and expected consumption over the remainder of the night. Breathalyser tests were used to measured breath alcohol concentration (converted to BAC) at interview.</p> <p>Results</p> <p>Most participants in the Dutch (56.2%), Spanish (59.6%) and British (61.4%) samples had preloaded (cf Slovenia 34.8%). In those drinking < 3 h at interview, there were no differences in BAC by gender or nationality. In UK participants, BAC increased significantly in those who had been drinking longer, reaching 0.13% (median) in females and 0.17% in males drinking > 5 h. In other nationalities, BAC increases were less pronounced or absent. High BAC (> 0.08%) was associated with being male, aged > 19, British and having consumed spirits. In all cities most participants intended to drink enough alcohol to constitute binge drinking.</p> <p>Conclusions</p> <p>Different models of drinking behaviour are seen in different nightlife settings. Here, the UK sample was typified by continued increases in inebriation compared with steady, more moderate intoxication elsewhere. With the former being associated with higher health risks, European alcohol policy must work to deter this form of nightlife.</p

    Dissecting the roles of mass and environment quenching in galaxy evolution with EAGLE

    Get PDF
    We exploit the pioneering cosmological hydrodynamical simulation, EAGLE, to study how the connection between halo mass (M_halo), stellar mass (M*) and star-formation rate (SFR) evolves across redshift. Using Principal Component Analysis we identify the key axes of correlation between these physical quantities, for the full galaxy sample and split by satellite/central and low/high halo mass. The first principal component of the z=0 EAGLE galaxy population is a positive correlation between M_halo, M* and SFR. This component is particularly dominant for central galaxies in low mass haloes. The second principal component, most significant in high mass haloes, is a negative correlation between M_halo and SFR, indicative of environmental quenching. For galaxies above M*~10^10M_solar, however, the SFR is seen to decouple from the M_halo-M* correlation; this result is found to be independent of environment, suggesting that mass quenching effects are also in operation. We find extremely good agreement between the EAGLE principal components and those of SDSS galaxies; this lends confidence to our conclusions. Extending our study to EAGLE galaxies in the range z=0-4, we find that, although the relative numbers of galaxies in the different subsamples change, their principal components do not change significantly with redshift. This indicates that the physical processes that govern the evolution of galaxies within their dark matter haloes act similarly throughout cosmic time. Finally, we present halo occupation distribution model fits to EAGLE galaxies and show that one flexible 6-parameter functional form is capable of fitting a wide range of different mass- and SFR-selected subsamples.Comment: 17 pages, 5 figures; accepted for publication in MNRA

    Synthesis of a Novel Type of 2,3'-BIMs via Platinum-Catalysed Reaction of Indolylallenes with Indoles

    Get PDF
    Optimisation, scope and mechanism of the platinum-catalysed addition of indoles to indolylallenes is reported here to give 2,3'-BIMs with a novel core structure very relevant for pharmaceutical industry. The reaction is modulated by the electronic properties of the substituents on both indoles, with the 2,3'-BIMs favoured when electron donating groups are present. Although simple at first, a complex mechanism has been uncovered that explains the different behaviour of these systems with platinum when compared with other metals (e.g. gold). Detailed labelling studies have shown Pt-catalysed 6-endo-trig cyclisation of the indollylallene as the first step of the reaction and the involvement of two cyclic vinyl-platinum intermediates in equilibrium through a platinum carbene, as the key intermediates of the catalytic cycle towards the second nucleophilic attack and formation of the BIMs

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    The effect of polymer/plasticiser ratio in film forming solutions on the properties of chitosan films

    Get PDF
    In this work physical-chemical properties of chitosan/ glycerol film forming solutions (FFS) and the resulting films were analysed. Solutions were prepared using different concentrations of plasticising agent (glycerol) and chitosan. Films were produced by solvent casting and equilibrated in a controlled atmosphere. FFS water activity and rheological behaviour were determined. Films water content, solubility, water vapour and oxygen permeabilities, thickness, and mechanical and thermal properties were determined. Fourier transform infrared (FTIR) spectroscopy was also used to study the chitosan/glycerol interactions. Results demonstrate that FFS chitosan concentration influenced solutions consistency coefficient and this was related with differences in films water retention and structure. Plasticiser addition led to an increase in films moisture content, solubility and water vapour permeability, water affinity and structural changes. Films thermo-mechanical properties are significantly affected by both chitosan and glycerol addition. FTIR experiments confirm these results. This work highlights the importance of glycerol and water plasticisation in films properties.This work was supported by National Funds from FCT - Fundacao para a Ciencia e a Tecnologia, through project PEst-OE/EQB/LA0016/2011.Authors Joana F. Fundo, Andrea C. Galvis-Sanchez and Mafalda A. C. Quintas acknowledge FCT for research grants SFRH/ BD / 62176 / 2009, SFRH/BPD/37890/2007 and SFRH / BPD / 41715 / 2007, respectively

    Selection of a phylogenetically informative region of the norovirus genome for outbreak linkage

    Get PDF
    The recognition of a common source norovirus outbreak is supported by finding identical norovirus sequences in patients. Norovirus sequencing has been established in many (national) public health laboratories and academic centers, but often partial and different genome sequences are used. Therefore, agreement on a target sequence of sufficient diversity to resolve links between outbreaks is crucial. Although harmonization of laboratory methods is one of the keystone activities of networks that have the aim to identify common source norovirus outbreaks, this has proven difficult to accomplish, particularly in the international context. Here, we aimed at providing a method enabling identification of the genomic region informative of a common source norovirus outbreak by bio-informatic tools. The data set of 502 unique full length capsid gene sequences available from the public domain, combined with epidemiological data including linkage information was used to build over 3,000 maximum likelihood (ML) trees for different sequence lengths and regions. All ML trees were evaluated for robustness and specificity of clustering of known linked norovirus outbreaks against the background diversity of strains. Great differences were seen in the robustness of commonly used PCR targets for cluster detection. The capsid gene region spanning nucleotides 900–1,400 was identified as the region optimally substituting for the full length capsid region. Reliability of this approach depends on the quality of the background data set, and we recommend periodic reassessment of this growing data set. The approach may be applicable to multiple sequence-based data sets of other pathogens
    • 

    corecore