23 research outputs found

    LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins

    Get PDF
    Conserved in a variety of evolutionarily divergent plant species, LOB DOMAIN (LBD) genes define a large, plant-specific family of largely unknown function. LBD genes have been implicated in a variety of developmental processes in plants, although to date, relatively few members have been assigned functions. LBD proteins have previously been predicted to be transcription factors, however supporting evidence has only been circumstantial. To address the biochemical function of LBD proteins, we identified a 6-bp consensus motif recognized by a wide cross-section of LBD proteins, and showed that LATERAL ORGAN BOUNDARIES (LOB), the founding member of the family, is a transcriptional activator in yeast. Thus, the LBD genes encode a novel class of DNA-binding transcription factors. Post-translational regulation of transcription factors is often crucial for control of gene expression. In our study, we demonstrate that members of the basic helix–loop–helix (bHLH) family of transcription factors are capable of interacting with LOB. The expression patterns of bHLH048 and LOB overlap at lateral organ boundaries. Interestingly, the interaction of bHLH048 with LOB results in reduced affinity of LOB for the consensus DNA motif. Thus, our studies suggest that bHLH048 post-translationally regulates the function of LOB at lateral organ boundaries

    iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages

    Get PDF
    Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and replicate in RAW 264.7 cells infected at multiplicities of infection (moi) of ≤ 1. In contrast, the organism was efficiently cleared by the macrophages when infected at an moi of 10. Interestingly, studies demonstrated that the monolayers only produced high levels of TNF-α, IL-6, IL-10, GM-CSF, RANTES and IFN-β when infected at an moi of 10. In addition, nitric oxide assays and inducible nitric oxide synthase (iNOS) immunoblot analyses revealed a strong correlation between iNOS activity and clearance of B. mallei from RAW 264.7 cells. Furthermore, treatment of activated macrophages with the iNOS inhibitor, aminoguanidine, inhibited clearance of B. mallei from infected monolayers. Based upon these results, it appears that moi significantly influence the outcome of interactions between B. mallei and murine macrophages and that iNOS activity is critical for the clearance of B. mallei from activated RAW 264.7 cells

    Checklist das Spermatophyta do Estado de São Paulo, Brasil

    Full text link

    Regulation of shoot meristem integrity during Arabidopsis vegetative development

    No full text
    Shoot growth and development is mediated by the activity of the shoot meristem, which initiates leaves and axillary meristems. Meristem maintenance is achieved by a poorly understood process that functions to sustain the balance of stem cell perpetuation in the central zone (CZ) and organogenesis in the peripheral zone (PZ). A recent study showed that two related homeodomain transcription factors, PENNYWISE (PNY) and POUND-FOOLISH (PNF), regulate meristem maintenance by controlling the integrity of the CZ. The non-flower producing phenotype displayed by pny pnf plants can be rescued by genetically increasing the size of the shoot meristem. In this addendum, we show that augmenting the size of the central region of pny pnf shoot meristems partially rescues the meristem termination phenotype that occurs during early stages of vegetative development. Thus, regulation of CZ integrity by PNY and PNF is crucial for vegetative and reproductive development

    Classical biological control for the protection of natural ecosystems

    Get PDF
    Of the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and ‘‘in progress,” for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 62% (13) achieved complete control of the target pest, 19% (4) provided partial control, and 43% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 49% (24) are still in progress. For both categories of pests, some projects’ success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (62% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active
    corecore